Implementasi Metode Simple Additive Weighting dan Machine Learning Untuk Rekomendasi Produk Skin Care Berbasis Android
DOI:
https://doi.org/10.30865/mib.v4i4.2389Keywords:
Machine Learning, Simple Additive Weighting, K-Nearest Neighbor, Skincare Product, Android ApplicationAbstract
Skin health, especially facial skin, is important because the face is the main attraction seen by others. This is closely related to the use of skincare products or skin care products that are used daily. Before determining which skincare product to use, it is very important to know the conditions and problems of facial skin. To make it easier to find out skin conditions and problems, researchers created an android-based application called "Hi Beautiful" using the Machine Learning and Simple Additive Weighting methods. In the application, Machine Learning plays a role in providing information on skin problems based on the results of feature extraction using the Gray Level Co-Occurrence Matrix (GLCM) method whose feature extraction results will be classified by the K-Nearest Neighbor method through inputting images on facial skin using the cellphone camera feature. Meanwhile, the simple additive weighting method is used to provide recommendations for skincare products based on the criteria for skin problems, skin types, age and product price ranges to be recommended. The implementation of the Hi Beautiful application is made using the open source Android Studio application. The results of tests carried out on the Hi Beautiful application include information on skin problems and recommendations for skincare products in the form of cleanser, toner, serum and moisturizer.
References
W. N. Aini, N. Hidayah, and N. S. S. Ambarwati, “Pengurangan jerawat pada kulit wajah dengan madu manuka,†Pros. Semin. Nas. dan call Pap., vol. 3, no. November, pp. 154–160, 2019.
A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,†Edumatic J. Pendidik. Inform., vol. 3, no. 2, pp. 99–108, 2019, doi: 10.29408/edumatic.v.
P. K. L. Utama, “Identifikasi Hoax pada Media Sosial dengan Pendekatan Machine Learning,†Widya Duta J. Ilm. Ilmu Agama dan Ilmu Sos. Budaya, vol. 13, no. 1, pp. 69–76, 2018, [Online]. Available: http://ejournal.ihdn.ac.id/index.php/VidyaDuta/article/view/436.
A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,†Neo Tek., vol. 5, no. 1, pp. 23–29, 2019, doi: 10.37760/neoteknika.v5i1.1379.
Mustakim and G. O. F, “Algoritma K-Nearest Neighbor Classification,†J. Sains, Teknol. dan Ind., vol. 13, no. 2, pp. 195–202, 2016, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin.
N. Yahya and A. Jananto, “Komparasi Kinerja Algoritma C.45 Dan Naive Bayes Untuk Prediksi Kegiatan Penerimaanmahasiswa Baru (Studi Kasus : Universitas Stikubank Semarang),†Pros. SENDI, no. 2014, pp. 978–979, 2019.
D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Indentifikasi Jenis Anggrek (Orchidaceae),†Innov. Res. Informatics, vol. 1, no. 2, pp. 51–56, 2019.
M. Rivki and A. M. Bachtiar, “Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia,†J. Sist. Inf., vol. 13, no. 1, pp. 31–37, 2017.
A. B. Primahudi, F. A. Suciono, and A. A. Widodo, “Sistem Pendukung Keputusan Untuk Pemilihan Karyawan Dengan Metode Simple Additive Weighting Di Pt. Herba Penawar Alwahida Indonesia,†J I M P - J. Inform. Merdeka Pasuruan, vol. 1, no. 2, pp. 57–80, 2016.
A. S. Putra, D. R. Aryanti, and I. Hartati, “Metode SAW (Simple Additive Weighting) sebagai Sistem Pendukung Keputusan Guru Berprestasi ( Studi Kasus : SMK Global Surya),†Pros. Semin. Nas. Teknol. dan Bisnis, pp. 85–97, 2018.
T. Limbong, “Implementasi Metode Simple Additive Weighting (Saw) Untuk Pemilihan Pekerjaan Bidang Informatika,†Semin. Nas. Ilmu Komput., vol. 1, no. August, pp. 1–6, 2013.
D. Rohpandi, A. Sugiharto, and M. Y. S. Jati, “Klasifikasi Citra Digital Berbasis Ekstraksi Ciri Berdasarkan Tekstur Menggunakan GLCM Dengan Algoritma K-Nearest Neighbor,†J. Inform., vol. 3, no. 2, pp. 79–86, 2017.
J. Wahyudi and I. Maulida, “Pengenalan Pola Citra Kain Tradisional Menggunakan Glcm Dan Knn,†J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 4, no. 2, pp. 43–48, 2019.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).