Machine Learning, Simple Additive Weighting, K-Nearest Neighbor, Skincare Product, Android Application

 (*)Dana Pratiwi Mail (Politeknik Negeri Sriwijaya, Palembang, Indonesia)
 Suroso Suroso (Politeknik Negeri Sriwijaya, Palembang, Indonesia)
 Jon Endri (Politeknik Negeri Sriwijaya, Palembang, Indonesia)

(*) Corresponding Author

Submitted: August 28, 2020; Published: October 20, 2020

DOI: http://dx.doi.org/10.30865/mib.v4i4.2389

Abstract

Skin health, especially facial skin, is important because the face is the main attraction seen by others. This is closely related to the use of skincare products or skin care products that are used daily. Before determining which skincare product to use, it is very important to know the conditions and problems of facial skin. To make it easier to find out skin conditions and problems, researchers created an android-based application called "Hi Beautiful" using the Machine Learning and Simple Additive Weighting methods. In the application, Machine Learning plays a role in providing information on skin problems based on the results of feature extraction using the Gray Level Co-Occurrence Matrix (GLCM) method whose feature extraction results will be classified by the K-Nearest Neighbor method through inputting images on facial skin using the cellphone camera feature. Meanwhile, the simple additive weighting method is used to provide recommendations for skincare products based on the criteria for skin problems, skin types, age and product price ranges to be recommended. The implementation of the Hi Beautiful application is made using the open source Android Studio application. The results of tests carried out on the Hi Beautiful application include information on skin problems and recommendations for skincare products in the form of cleanser, toner, serum and moisturizer.

Keywords


Machine Learning, Simple Additive Weighting, K-Nearest Neighbor, Skincare Product, Android Application

Full Text:

PDF


Article Metrics

Abstract View: 80 times | PDF View: 20 times

References

W. N. Aini, N. Hidayah, and N. S. S. Ambarwati, “Pengurangan jerawat pada kulit wajah dengan madu manuka,” Pros. Semin. Nas. dan call Pap., vol. 3, no. November, pp. 154–160, 2019.

A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,” Edumatic J. Pendidik. Inform., vol. 3, no. 2, pp. 99–108, 2019, doi: 10.29408/edumatic.v.

P. K. L. Utama, “Identifikasi Hoax pada Media Sosial dengan Pendekatan Machine Learning,” Widya Duta J. Ilm. Ilmu Agama dan Ilmu Sos. Budaya, vol. 13, no. 1, pp. 69–76, 2018, [Online]. Available: http://ejournal.ihdn.ac.id/index.php/VidyaDuta/article/view/436.

A. Rohman and M. Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,” Neo Tek., vol. 5, no. 1, pp. 23–29, 2019, doi: 10.37760/neoteknika.v5i1.1379.

Mustakim and G. O. F, “Algoritma K-Nearest Neighbor Classification,” J. Sains, Teknol. dan Ind., vol. 13, no. 2, pp. 195–202, 2016, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin.

N. Yahya and A. Jananto, “Komparasi Kinerja Algoritma C.45 Dan Naive Bayes Untuk Prediksi Kegiatan Penerimaanmahasiswa Baru (Studi Kasus : Universitas Stikubank Semarang),” Pros. SENDI, no. 2014, pp. 978–979, 2019.

D. P. Pamungkas, “Ekstraksi Citra menggunakan Metode GLCM dan KNN untuk Indentifikasi Jenis Anggrek (Orchidaceae),” Innov. Res. Informatics, vol. 1, no. 2, pp. 51–56, 2019.

M. Rivki and A. M. Bachtiar, “Implementasi Algoritma K-Nearest Neighbor Dalam Pengklasifikasian Follower Twitter Yang Menggunakan Bahasa Indonesia,” J. Sist. Inf., vol. 13, no. 1, pp. 31–37, 2017.

A. B. Primahudi, F. A. Suciono, and A. A. Widodo, “Sistem Pendukung Keputusan Untuk Pemilihan Karyawan Dengan Metode Simple Additive Weighting Di Pt. Herba Penawar Alwahida Indonesia,” J I M P - J. Inform. Merdeka Pasuruan, vol. 1, no. 2, pp. 57–80, 2016.

A. S. Putra, D. R. Aryanti, and I. Hartati, “Metode SAW (Simple Additive Weighting) sebagai Sistem Pendukung Keputusan Guru Berprestasi ( Studi Kasus : SMK Global Surya),” Pros. Semin. Nas. Teknol. dan Bisnis, pp. 85–97, 2018.

T. Limbong, “Implementasi Metode Simple Additive Weighting (Saw) Untuk Pemilihan Pekerjaan Bidang Informatika,” Semin. Nas. Ilmu Komput., vol. 1, no. August, pp. 1–6, 2013.

D. Rohpandi, A. Sugiharto, and M. Y. S. Jati, “Klasifikasi Citra Digital Berbasis Ekstraksi Ciri Berdasarkan Tekstur Menggunakan GLCM Dengan Algoritma K-Nearest Neighbor,” J. Inform., vol. 3, no. 2, pp. 79–86, 2017.

J. Wahyudi and I. Maulida, “Pengenalan Pola Citra Kain Tradisional Menggunakan Glcm Dan Knn,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 4, no. 2, pp. 43–48, 2019.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Machine Learning, Simple Additive Weighting, K-Nearest Neighbor, Skincare Product, Android Application

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.