Klasterisasi Mineral Batuan di Lapangan X berdasarkan Data Spektral menggunakan K-Means Clustering

 (*)Sulaiman Abdullah Pane Mail (Universitas Indonesia, Depok, Indonesia)
 Felix Mulia Hasudungan Sihombing (Universitas Indonesia, Depok, Indonesia)

(*) Corresponding Author

Submitted: August 17, 2020; Published: October 20, 2020

DOI: http://dx.doi.org/10.30865/mib.v4i4.2352


Technology continues to be applied in the field of geology in various branches of science, one of which is the use of machine learning methods which are included in artificial intelligence technology. Machine learning methods able to identifying rock minerals. Rock mineral clustering is carried out to identify the distribution of the optimal number of mineral groups based on geological information held in rock drilling results data during the geological exploration stage in the Manjimup region, Western Australia. Identification of rock minerals through clustering is carried out using unsupervised machine learning with the K-Means clustering method. The data used in this research are data from the measurement of the electromagnetic spectrum in the form of Thermal Infrared (TIR) spectral data derived from rock drilling results. The spectral data used consisted of 341 parameters so that the input dimension was reduced to reduce computational complexity using Principal Component Analysis (PCA) into two-dimensional data so able to visualized more easily. Based on the evaluation results, the optimal number of rock mineral groups through the results of clustering using K-Means based on geological information is 3 groups of rock minerals


Spectral Data, Clustering, K-Means, Minerals, Machine Learning, Principal Component Analysis (PCA)

Full Text:


Article Metrics

Abstract View: 84 times | PDF View: 22 times


Klaus Schwab, The Fourth Industrial Revolution, World Econ. Geneva, 2016.

K. Parakh, S. Thakur, B. Chudasama, S. Tirodkar, A. Porwal, and A. Bhattacharya, “Machine learning and spectral techniques for lithological classification,” Multispectral, Hyperspectral, Ultraspectral Remote Sens. Technol. Tech. Appl. VI, vol. 9880, no. April, p. 98801Z, 2016, doi: 10.1117/12.2223638.

A. Caté, L. Perozzi, E. Gloaguen, and M. Blouin, “Machine learning as a tool for geologists,” Lead. Edge, vol. 36, no. 3, pp. 215–219, 2017, doi: 10.1190/tle36030215.1.

A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM J. Res. Dev., vol. 44, no. 1–2, pp. 207–219, 1959, doi: 10.1147/rd.441.0206.

Andreas C. Müller and Sarah Guido, Introduction to with Python Learning Machine. O’Reilly Media, Incorporated, 2016.

J. W. G. Putra, “Pengenalan Konsep Pembelajaran Mesin dan Deep Learning,” pp. 1–235, 2019.

A. Ali and C. Sheng-Chang, “Characterization of well logs using K-mean cluster analysis,” J. Pet. Explor. Prod. Technol., vol. 10, no. 6, pp. 2245–2256, 2020, doi: 10.1007/s13202-020-00895-4.

B. Savage, “Wheatley project, Anuual report E70/2258 & E70/2339: Hampton Hill Mining Wheatley Project,” Australia, 2007.

D. W. Coulter, P. D. Harris, L. M. Wickert, and X. Zhou, “Advances in Spectral Geology and Remote Sensing: 2008 – 2017,” Proc. Explor. 17 Sixth Decenn. Int. Conf. Miner. Explor., pp. 23–50, 2017.

L. Shu, K. McIsaac, G. R. Osinski, and R. Francis, “Unsupervised feature learning for autonomous rock image classification,” Comput. Geosci., vol. 106, no. March 2016, pp. 10–17, 2017, doi: 10.1016/j.cageo.2017.05.010.

T. S. Madhulatha, “An Overview on Clustering Methods,” IOSR J. Eng., vol. 2, no. 4, pp. 719–725, 2012.

C. Klein, The 22nd Edition of the Manual of Mineral Science, 22nd ed. New York: John Wiley & Sons, 2002.

L. Hassan, Metamorphosed Vms Mineralization At Wheatley , Southwest At Wheatley , Southwest, no. August. 2017.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasterisasi Mineral Batuan di Lapangan X berdasarkan Data Spektral menggunakan K-Means Clustering


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.