Bagian 1: Kombinasi Metode Klastering dan Klasifikasi (Kasus Pandemi Covid-19 di Indonesia)

 (*)Agus Perdana Windarto Mail (STIKOM Tunas Bangsa, Pematangsiantar, Sumatera Utara, Indonesia, Mahasiswa program studi Doktor (S3) Teknologi Informasi, Universitas Putra Indonesia "YPTK" Padang, Indonesia)
 Ulfah Indriani (Universitas Potensi Utama, Medan, Indonesia)
 Mokhamad Ramdhani Raharjo (Universitas Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin, Banjarmasin, Indonesia)
 Linda Sari Dewi (STMIK Nusa Mandiri, Jakarta, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/mib.v4i3.2312

Abstract

The purpose of this research is to combine the classification and classification methods that are part of data mining. The case raised was the number of the spread of the Covid-19 pandemic in Indonesia as of July 7, 2020 with 34 records. Data sources were obtained from Ministry of Health Data, sampled and processed from covid19.go.id and bnpb.go.id. The variables used in the study are the number of positive cases (x1), number of cases cured (x2) and number of deaths (x3) by province. The classification and classification methods used are k-medoids and C4.5. The k-medoids method works to map clusters of regions in Indonesia by province. The mapping labels used are 3 clusters: high cluster (C1 = red zone), alert cluster (C2 = yellow zone), low cluster (C3 = green zone). The results of the mapping are continued using the C4.5 method to see the rules in the form of a decision tree. The analysis process is assisted with the RapidMiner software. Determination of the number of clusters (k) is determined by using the Davies Bouldin Index (DBI) parameter to optimize the cluster results obtained. For k = 3 has an optimal value of 0.740. The mapping results obtained 9 provinces are in the high cluster (C1 = red zone), 3 provinces are in the alert cluster (C2 = yellow zone) and 22 provinces are in the low cluster (C3 = green zone). The value obtained from the decision tree for cluster height (C1 = red zone) based on C4.5 is if the number of positive cases is smaller than 9524 and greater than 4329 (4329> x1 <9524). The nine provinces included in the high cluster (C1 = red zone) are Aceh, Bali, DKI Jakarta, West Java, Central Java, East Java, South Kalimantan, South Sumatra and South Sulawesi. The results of the combination of these methods can be applied and provide knowledge in the form of new information about mapping in the form of clusters to the distribution of the Covid-19 pandemic in Indonesia

Keywords


Data Mining, Classification, Classification, Covid 19, Indonesia

Full Text:

PDF


Article Metrics

Abstract view : 364 times
PDF - 181 times

References

A. P. Windarto et al., “Analysis of the K-Means Algorithm on Clean Water Customers Based on the Province,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019, doi: 10.1088/1742-6596/1255/1/012001.

A. P. Windarto, “Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering,” Techno.COM, vol. 16, no. 4, pp. 348–357, 2017.

A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” Int. J. Artif. Intell. Res., vol. 1, no. 2, pp. 26–33, 2017.

M. G. Sadewo, A. P. Windarto, and D. Hartama, “Penerapan datamining pada populasi daging ayam ras pedaging di indonesia berdasarkan provinsi menggunakan k-means clustering,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 1, pp. 60–67, 2017.

I. Kamila, U. Khairunnisa, and Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, pp. 119–125, 2019.

D. Marlina, N. Lina, A. Fernando, and A. Ramadhan, “Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, p. 64, 2018, doi: 10.24014/coreit.v4i2.4498.

J. Jamal and D. Yanto, “Analisis RFM dan Algoritma K-Means untuk Clustering Loyalitas Customer,” Energy, vol. 9, no. 1, pp. 0–8, 2019.

E. H. S. Atmaja, “Implementation of k-Medoids Clustering Algorithm to Cluster Crime Patterns in Yogyakarta,” Int. J. Appl. Sci. Smart Technol., vol. 1, no. 1, pp. 33–44, 2019, doi: 10.24071/ijasst.v1i1.1859.

D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” J. Phys. Conf. Ser., vol. 1339, no. 1, 2019, doi: 10.1088/1742-6596/1339/1/012042.

M. Widyastuti, A. G. Fepdiani Simanjuntak, D. Hartama, A. P. Windarto, and A. Wanto, “Classification Model C.45 on Determining the Quality of Custumer Service in Bank BTN Pematangsiantar Branch,” J. Phys. Conf. Ser., vol. 1255, no. 012002, pp. 1–6, 2019, doi: 10.1088/1742-6596/1255/1/012002.

W. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, “C.45 Classification Rules Model for Determining Students Level of Understanding of the Subject,” J. Phys. Conf. Ser., vol. 1255, no. 012005, pp. 1–7, 2019, doi: 10.1088/1742-6596/1255/1/012005.

F. Rahman, I. I. Ridho, M. Muflih, S. Pratama, M. R. Raharjo, and A. P. Windarto, “Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination Country Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination C,” 2020, doi: 10.1088/1757-899X/835/1/012058.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Bagian 1: Kombinasi Metode Klastering dan Klasifikasi (Kasus Pandemi Covid-19 di Indonesia)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.