Diagnosa Penyakit Ginjal Kronis Menggunakan Metode Klasifikasi Naive
DOI:
https://doi.org/10.30865/mib.v4i3.2292Keywords:
Chronic Kidney Disease, Data Mining Classification, Naïve Bayes Classifier MethodAbstract
Chronic Kidney Disease is a very dangerous disease that is often not seriously considered with the effects of this disease which leads to death. More than 26 million people in the United States are not aware of their kidney disease, only 8% of them begin to realize the disease, each body must be known early whether or not the body condition / / by diagnosing it, in this study classifications will be carried out on the diagnostic data attributes Chronic kidney disease aims to simplify the process of classifying symptoms and making decisions on the diagnosis of kidney disease, this process is carried out using a data mining classification approach using the Naïve Bayes Classifier methodReferences
N. Rofiqo, A. P. Windarto, and D. Hartama, “Penerapan Clustering Pada Penduduk Yang Mempunyai Keluhan Kesehatan Dengan Datamining K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 216–223, 2018, doi: 10.30865/komik.v2i1.929.
K. Timur, K. Utara, S. Selatan, and I. K. Sehat, “DISPARITAS PEMBANGUNAN KESEHATAN DI INDONESIA BERDASARKAN Disparity of Health Development in Indonesia Based on Healthy Family,†pp. 18–27, 2020.
M. Amurwaningsih and U. Arum Darjono, “Analisis Hubungan Kualitas Hidup Yang Berhubungan Dengan Kesehatan Mulut (OHRQoL) Dan Status Kecemasan Dengan Status Nutrisi Pada Masyarakat Usia Lanjut,†Maj. Ilm. Sultan Agung, vol. 48, no. 123, pp. 46–54, 2010.
E. A. Kurnianto, I. Cholissodin, and E. Santoso, “Klasifikasi Penderita Penyakit Ginjal Kronis Menggunakan Algoritme Support Vector Machine (SVM),†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 12, pp. 6597–6602, 2018.
M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 311–319, 2018, doi: 10.30865/komik.v2i1.943.
R. A. Saputra, “Komparasi Algoritma Klasifikasi Data Mining Untuk Memprediksi Penyakit Tuberculosis ( Tb ): Studi Kasus Puskesmas Karawang,†Semin. Nas. Inov. dan Tren, no. April, pp. 1–8, 2014.
D. P. Utomo, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,†vol. 4, no. April, pp. 437–444, 2020, doi: 10.30865/mib.v4i2.2080.
A. Nugroho, Analisis dan Perancangan Sistem Informasi dengan Metodologi Berorientasi Objek, Edisi Revi. Bandung: Informatika Bandung, 2005.
N. D. Prayoga, N. Hidayat, and R. K. Dewi, “Sistem Diagnosis Penyakit Hati Menggunakan Metode Naïve Bayes,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2666–2671, 2018.
H. Amalia, “Perbandingan Metode Data Mining Svm Dan Nn Untuk Klasifikasi Penyakit Ginjal Kronis,†J. Pilar Nusa Mandiri, vol. 14, no. 1, pp. 1–6, 2018, doi: https://doi.org/10.33480/pilar.v14i1.80.
A. Sulistyohati, T. Hidayat, K. Kunci: Ginjal, S. Pakar, and M. Dempster-Shafer, “Aplikasi Sistem Pakar Diagnosa Penyakit Ginjal Dengan Metode Dempster-Shafer,†Semin. Nas. Apl. Teknol. Inf., vol. 2008, no. Snati, pp. 1907–5022, 2008.
D. Evanko, “Optical imaging of the native brain,†Nat. Methods, vol. 7, no. 1, p. 34, 2010, doi: 10.1038/nmeth.f.284.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).