Implementasi Algoritma Fuzzy C-Means Pada Aplikasi Seleksi Karyawan Digital Talent di PT Telekomunikasi Indonesia

 Riska Desrianti (Universitas Mercu Buana, Jakarta, Indonesia)
 (*)Herry Derajad Wijaya Mail (Universitas Mercu Buana, Jakarta, Indonesia)

(*) Corresponding Author

Submitted: June 6, 2020; Published: October 20, 2020

DOI: http://dx.doi.org/10.30865/mib.v4i4.2267

Abstract

Digital talent is currently needed along with increasing demand for digital application projects in PT. Telekomunikasi Indonesia. The manual recruitment process is a constraint to provide the needs of digital talent. To facilitate the recruitment process is required recruitment system which implements data mining techniques to cluster candidate based on level.  Fuzzy c-means is the clustering method that will be implemented on this system. The system is designed to support recruitment process and predict candidate levels. With the recruitment system, the process is expected to be faster and more accurate than before. The digital talent employees data will be used as training data with the attributes last education, certification and work experience in Information Technology. Based on the results of the study, there are 4 job-level clusters employees, namely basic, junior, medium and senior cluster.

Keywords


Data Mining, Fuzzy C-Means, Employee Recruitment, Clustering

Full Text:

PDF


Article Metrics

Abstract View: 75 times | PDF View: 23 times

References

A. A. Rizky and I. Ramdhani, “Perancangan Sistem Informasi Perekrutan Karyawan Berbasis Web Menggunakan PHP dan MySQL DI PT. Ria Indah Mandiri,” J. Manaj. Inform., vol. 9, no. 1, pp. 49–57, 2019, doi: 10.34010/jamika.v9i1.1651.

F. Yani and E. Yanuarti, “Seleksi Calon Karyawan Pada Perusahaan Menggunakan Metode AHP di STMIK Atma Luhur Pangkalpinang,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 1, p. 79, 2019, doi: 10.32736/sisfokom.v8i1.612.

N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C_Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan (Studi Kasus: Sekolah Tinggi Teknologi Bandung),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492.

H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.

R. Rismanto, I. Fahrur Rozi, and A. Prasetyo, “Implementasi Fuzzy C-Means Untuk Prediksi Perilaku Mahasiswa Berdasarkan Jumlah Ketidakhadiran,” SMARTICS J., vol. 3, no. 2, pp. 39–45, 2017, doi: 10.21067/smartics.v3i2.1965.

D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” J. Telekomun. dan Komput., vol. 8, no. 3, p. 163, 2018, doi: 10.22441/incomtech.v8i3.4174.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.

I. Farida and S. W. H. L. Hendric, “Prediksi Pola Kelulusan Mahasiswa Menggunakan Teknik Data Mining Classification Emerging Pattern,” Petir, vol. 12, no. 1, pp. 1–17, 2019, doi: 10.33322/petir.v12i1.414.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

A. Syarifudin, “Perancangan Sistem Informasi Pengajuan dan Pelaporan Pembayaran Tunjangan Kinerja Kementerian Keuangan Menggunakan Metode Prototype,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 2, p. 149, 2019, doi: 10.32736/sisfokom.v8i2.641.

A. Susanto and Meiryani, “System Development Method with The Prototype Method,” Int. J. Sci. Technol. Res., vol. 8, no. 7, pp. 141–144, 2019.

N. R. Syarif and Windarto, “Implementasi Algoritma Fuzzy C-Means Dan Metode Recency Frequency Monetary ( Rfm ) Pada Aplikasi Data,” Sebatik, pp. 88–94, 2018.

P. E. Mas`udia, F. Arinie, and L. D. Mustafa, “Clustering Data Remunerasi Dosen Untuk Penilaian Kinerja Menggunakan Fuzzy c-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 288–294, 2018, doi: 10.29207/resti.v2i1.97.

Sismadi and Y. Kusnadi, “Prediksi Tingkat Kelulusan Siswa Elearning Berbasis Algoritma Fuzzy C-Means,” J. TECHNO Nusa Mandiri, vol. 15, no. 1, pp. 1–6, 2018.

F. S. Handayani and M. P. Putri, “Implementasi Metode Prototipe Pada Website Penelusuran Minat Peserta Didik Sebagai Layanan Bimbingan Konseling,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 10, no. 1, p. 44, 2018, doi: 10.22303/csrid.10.1.2018.44-57.

D. Purnomo, “Model Prototyping Pada Pengembangan Sistem Informasi,” J I M P - J. Inform. Merdeka Pasuruan, vol. 2, no. 2, pp. 54–61, 2017, doi: 10.37438/jimp.v2i2.67.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Algoritma Fuzzy C-Means Pada Aplikasi Seleksi Karyawan Digital Talent di PT Telekomunikasi Indonesia

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.