Pemanfatan Arima Untuk Prediksi Harga Emas Dalam Sistem Rekomendasi Trading Gold Option

 Yuliana Melita Pranoto (ISTTS Surabaya, Surabaya, Indonesia)
 Reddy Alexandro Harianto (ISTTS Surabaya, Surabaya, Indonesia)
 (*)Iswanto Iswanto Mail (ISTTS Surabaya, Surabaya, Indonesia)

(*) Corresponding Author

Submitted: June 2, 2020; Published: October 20, 2020

DOI: http://dx.doi.org/10.30865/mib.v4i4.2246

Abstract

In gold option trading, it is necessary to analyze both fundamental and technical data. In this study technical analysis is used to predict Gold Prices to help traders in making decisions. ARIMA is a method that completely ignores the independent variables in forecasting and is able to be a solution to predict gold prices and is used for the gold trading recommendation system. This is evidenced by the validation of high MAD = 16.93, MSE = 453.00, MAPE = 1.13%. And validation is low MAD = 12.23, MSE = 237.54, MAPE = 0.83%. And validation low MAD = 16.76, MSE = 576.32, MAPE = 1.12%. The results of the recommendation system from the ten trials predicted by Arima are recommended. When compared to the price in the field the target profit is 7% per week from ten experiments if on average the profit has exceeded the target.

Keywords


ARIMA, Forcast, Machine Learning, Prediksi Forex

Full Text:

PDF


Article Metrics

Abstract View: 128 times | PDF View: 23 times

References

A. Sespajayadi, Indrabayu, and I. Nurtanio, “Technical data analysis for movement prediction of Euro to USD using Genetic Algorithm-Neural Network,” in 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2015, pp. 23–26.

A.M.FarleyandS.Jones,“Using a genetic algorithm todeterminean index of leadingeconomicindicators,”Computational Economics,vol.7,no.3,pp.163–173,1994.

A.Moch´on,D.Quintana,Y.S ´ aez, and P.Isasi,“Softcomputing techniques applied to finance,”AppliedIntelligence, vol. 29, no. 2,pp.111–115,2008

Sunarsan Sitohang, Anggiat Marubah Siringo. 2018 Analisis Peramalan Harga Emas Dengan Metode Automatic Clustering And Fuzzy Logic Relationship. Corresponding author : ssunarsan@gmail.com 1,2, Fakultas Teknik Universitas Putera Batam

Yulin Du 2018, Application and analysis of forecasting stock price index based on combination of ARIMA model and BP neural network, School of Management ,Fudan University, Department of Finance, East China University of Political and Science of Law, Shanghai

Chintya Christina, Rian Febrian Umbara 2015, Gold Price Prediction Using Type-2 Neuro-Fuzzy Modeling and ARIMA, School of Computing Telkom University Bandung, Indonesia

Adiba Qonita, Annas Gading Pertiwi, Triyanna Widiyaningtyas 2017, Prediction of Rupiah Against US Dollar by Using ARIMA, Electrical Engineering Department Universitas Negeri Malang Malang, Indonesia.

R. M. Kapi/a Taranga Ratnayaka, D.M.K.N Seneviratne, Wei Jianguo and Hasitha Indika Arumawadu 2015, A Hybrid Statistical Approach for Stock Market Forecasting Based on Artificial Neural Network and ARIMA Time Series Models. International Conference on Behavioral, Economic, and Socio-Cultural Computing.

Hendranata, Anton. 2003. ARIMA (Autoregressive Moving Average). Manajemen Keuangan Sektor Publik FEUI.

Makridakis, Spyro. , Steven C. Wheelwright, dan Victor E. McGee. Metode dan Aplikasi Peramalan, Jakarta: Erlangga, 1999.

G. J. D. a. R. G. Box, Time Series Analysis Forecasting and Control, New Jersey: John Wiley & Sons Inc Publication, 2008. J. R. Taylor, Introduction to Error Analysis : The Study of Uncertainties in Physical Measurements, University Science Books, 1999.

Asteriou, D. & Hall, S. G. , 2011. ARIMA Models and the Box-Jenkins Methodology. Applied Econometrics, Volume 2, p. 265 -286.

.l. Pack, 0. , 1990. In defense of ARIMA modeling. International Journal of Forecasting, Volume 6, pp. 211 -218.

Kristien Margi, Sofian Pendawa. 2015 Analisa Dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu. Program Studi Teknik Informatika, Fakultas Teknologi dan Desain, Universitas Bunda Mulia ISBN: 978-602-1180-21-1

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemanfatan Arima Untuk Prediksi Harga Emas Dalam Sistem Rekomendasi Trading Gold Option

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Sekretariat : Jln. Sisingamangaraja No. 338 Telp 061-7875998
email : mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.