Pengelompokkan Data Bencana Alam Berdasarkan Wilayah, Waktu, Jumlah Korban dan Kerusakan Fasilitas Dengan Algoritma K-Means
DOI:
https://doi.org/10.30865/mib.v4i3.2213Keywords:
Data Mining, Clustering, K-Means, Natural DisastersAbstract
Indonesia has fertile soil, natural resources and abundant marine resources. However, Indonesia is also not immune to the risk of natural disasters which are a series of events that disturb and threaten life safety and cause material and non-material losses. Indonesia's strategic geological location causes Indonesia to be frequently hit by earthquakes, volcanic eruptions and other natural disasters. From the data collected, natural disasters that occurred in Indonesia consisted of several categories, namely earthquakes, volcanic eruptions, floods, landslides, tornados, and tsunamis. Many natural disasters in Indonesia have caused casualties, both fatalities and injuries, destroying the surrounding area and destroying infrastructure and causing property losses. The trend of increasing incidence of natural disasters needs to be further investigated to prevent the number of victims from increasing. This information can be obtained through a data mining approach given the large amount of data available. In relation to natural disaster data, clustering techniques in data mining are very useful for grouping natural disaster data based on the same characteristics so that the data can be adopted as a groundwork for predicting natural disaster events in the future. Thus, this research is supposed to group natural disaster data using clustering techniques using the k-means algorithm into several groups, in terms of natural disaster types, time of disaster, number of victims, and damage to various facilities as a result of natural disasters
References
B. Badan Pusat Statistik, “Statistik Indonesia 2018,†Badan Pusat Statistik, 2018. [Online]. Available: https://www.bps.go.id/publication/2018/07/03/5a963c1ea9b0fed6497d0845/statistik-indonesia-2018. [Accessed: 25-Aug-2019].
P. V. dan M. B. G. Badan Geologi, “Data Dasar Gunung Api Indonesia,†Pusat Vulkanologi dan Mitigasi Bencana Geologi, 2019. [Online]. Available: http://www.vsi.esdm.go.id/index.php/gunungapi/data-dasar-gunungapi. [Accessed: 25-Aug-2019].
N. O. and A. A. NOAA, “Natural Hazards Viewer,†National Oceanic and Atmospheric Administration, 2019. [Online]. Available: https://maps.ngdc.noaa.gov/viewers/hazards/?layers=0#. [Accessed: 26-Aug-2019].
N. G. D. C. D. C. NGDC/WDC, “Tsunami Runup Data,†National Geophysical Data Center/World Data Center, 2019. [Online]. Available: https://www.ngdc.noaa.gov/hazard/tsu_db.shtml. [Accessed: 26-Aug-2019].
B. N. P. B. BNPB, “Data Statistik Bencana,†Badan Nasional Penanggulangan Bencana, 2018. [Online]. Available: http://bnpb.cloud/dibi/tabel1b. [Accessed: 25-Aug-2019].
M. G. Sadewo, A. P. Windarto, and A. Wanto, “Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 311–319, 2018.
B. Supriyadi, A. P. Windarto, T. Soemartono, and Mungad, “Classification of Natural Disaster Prone Areas in Indonesia Using K-Means,†Int. J. Grid Distrib. Comput., vol. 11, no. 8, pp. 87–98, 2018.
M. S. Yana, L. Setiawan, E. M. Ulfa, and A. Rusyana, “Penerapan Metode K-Means dalam Pengelompokan Wilayah Menurut Intensitas Kejadian Bencana Alam di Indonesia Tahun 2013-2018,†J. Data Anal., vol. 1, no. 2, pp. 93–102, 2018.
Prihandoko, Bertalya, and M. I. Ramadhan, “An Analysis of Natural Disaster Data By Using K-Means and K-Medoids Algorithm of Data Mining Techniques,†QiR 2017 - 2017 15th Int. Conf. Qual. Res. Int. Symp. Electr. Comput. Eng., vol. 2017-Decem, pp. 221–225, 2017.
E. F. Sirat, B. D. Setiawan, and F. Ramdani, “Comparative Analysis of K-Means and Isodata Algorithms for Clustering of Fire Point Data in Sumatra Region,†2018 4th Int. Symp. Geoinformatics, ISyG 2018, pp. 1–6, 2018.
M. I. Ramadhan, “Penerapan Data Mining Untuk Analisis Data Bencana Milik BNPB Menggunakan Algoritma K-Means dan Linear Regression,†J. Ilm. Inform. Komput., vol. 22, no. 1, 2017.
H. Artatia and H. R.B., “Pengelompokan Dampak Gempa Bumi Dari Segi Kerusakan Fasilitas Pada Provinsi Yang Berpotensi Gempa Di Indonesia Menggunakan K-Means-Clustering,†pp. 742–748, 2015.
C. A. Sugianto and M. N. Astita, “Implementasi Data Mining Dalam Data Bencana Tanah Longsor Di Jawa Barat Menggunakan Algoritma Fp-Growth,†Techno.Com, vol. 17, no. 1, pp. 91–102, 2018.
A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),†Semesta Tek., vol. 21, no. 1, pp. 60–64, 2018.
M. A. Sembiring, M. F. L. Sibuea, and A. Sapta, “Analisa Kinerja Algoritma C.45 Dalam Memprediksi Hasil Belajar,†J. Sci. Soc. Res., vol. 1, no. February, pp. 73–79, 2018.
B. Depaire, G. Wets, and K. Vanhoof, “Traffic accident segmentation by means of latent class clustering,†Accid. Anal. Prev., 2008.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).