Implementasi Algoritma Neural Network Berbasis Particle Swarm Optimazation untuk Penentuan Kredit

Authors

  • Syaifur Rahmatullah STMIK Nusa Mandiri, Jakarta

DOI:

https://doi.org/10.30865/mib.v4i3.2178

Keywords:

Credit, Neural Network, Particle Swarm

Abstract

Bad credit is one of the credit risks faced by financial and banking industry players. Bad credit occurs if in the long run, financial institutions or banks cannot withdraw credit loans within the allotted time. Bad credit has a bad impact for credit providers in the form of risk of loss. Of course this should not be allowed to drag on and must be resolved. However, to guarantee accuracy in determining creditworthiness, an accurate algorithm is needed. Neural Network is an algorithm that can map and classify data input and can be used for the prediction of several variables that are input into this algorithm. To be able to add accuracy in predicting the determinants of credit worthiness, this algorithm is optimized with Particle Swarm Optimazation. The results of the study in the form of confusion matrix prove that the accuracy of Neural Networks based on Particle Swarm Optimazation has an accuracy rate of 96.67% and AUC results of 0.965

Author Biography

Syaifur Rahmatullah, STMIK Nusa Mandiri, Jakarta

Prodi Teknik Informatika

References

I. bankir Indonesia(IBI), Mengelola Kredit Secara Sehat, 1st ed. Jakarta: PT Gramedia Pustaka Utama, 2014.

I. Hariyani, Restrukturisasi dan Penghapusan Kredit Macet, Pertama. Jakarta: PT Elex Komputindo, 2010.

Y. Murdianingsih, “Klasifikasi Nasabah Baik Dan Bermasalah Menggunakan Metode Naive Bayes,†J. Inf., vol. 2015, no. November, pp. 349–356, 2015, doi: 10.1007/3-540-61794-9_66.

A. Sucipto, “Pada Koperasi Simpan Pinjam Dengan Menggunakan,†J. DISPROTEK, vol. 6, no. 1, pp. 75–87, 2015.

M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,†Pseudocode, vol. 4, no. 2, pp. 120–128, 2017, doi: 10.33369/pseudocode.4.2.120-128.

H. Leidiyana, “Penerapan Algoritma K-Nearest Neighbor Untuk Penentuan Resiko Kredit Kepemilikan Kendaraan Bermotor,†J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 1, no. 1, pp. 65–76, 2013.

A. Rifai and R. Aulianita, “Komparasi Algoritma Klasifikasi C4.5 dan Naïve Bayes Berbasis Particle Swarm Optimization Untuk Penentuan Resiko Kredit,†J. speed- sentra Penelit. enginering dan edukasi, vol. 10, no. 2, 2018, [Online]. Available: speed.web.id.

B. Nurina Sari, “Implementasi Teknik Seleksi Fitur Information Gain Pada Algoritma Klasifikasi Machine Learning Untuk Prediksi Performa Akademik Siswa,†Semin. Nas. Teknol. Inf. dan Multimed. 2016, pp. 55–60, 2016, [Online]. Available: http://semnas.amikom.ac.id/document/pdf/1482.pdf.

M. Refaat, Data Preparation for Data Mining Using SAS, 1st ed. San Fransisco: Elsavier, 2010.

F. F. Harryanto and S. Hansun, “Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT WISE,†J. Tek. Inform. Dan Sist. Inf., vol. 3, no. 2, pp. 95–103, 2017, [Online]. Available: http://jurnal.mdp.ac.id/index.php/jatisi/article/view/71.

A. Shukla, R. Tiwari, and R. Kala, Real Life Applications of Soft Computing, 1st ed. Boca Raton: CRC Press, 2010.

F. Gorunescu, Data Mining: Concepts, Models and Techniques, 1st ed. India: Springer, 2011.

D. Palupi Rini, S. Mariyam Shamsuddin, and S. Sophiyati Yuhaniz, “Particle Swarm Optimization: Technique, System and Challenges,†Int. J. Comput. Appl., vol. 14, no. 1, pp. 19–27, 2011, doi: 10.5120/1810-2331.

Downloads

Published

2020-07-20

Issue

Section

Articles