Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung
DOI:
https://doi.org/10.30865/mib.v4i2.2080Keywords:
Heart Disease, Data Mining, Reduction, C5.0, Naïve Bayes ClassifierAbstract
Heart disease is a disease with a high mortality rate, there are 12 million deaths each year worldwide. This is what causes the need for early diagnosis to find out the heart disease. But the process of diagnosis is quite challenging because of the complex relationship between the attributes of heart disease. So it is important to know the main attributes that are used as a decision making process or the classification process in heart disease. In this study the dataset used has 57 types of attributes in it. So that reduction is needed to shorten the diagnostic process, the reduction process can be carried out using the Principal Component Analysis (PCA) method. The PCA method itself can be combined with data mining calcification techniques to measure the accuracy of the dataset. This study compares the accuracy rate using the C5.0 algorithm and the Naïve Bayes Classifier (NBC) algorithm, the results obtained both after and before the reduction are Naïve Bayes Classifier (NBC) algorithms that have better performance than the C5.0 algorithm
References
R. Annisa, “ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI PENDERITA PENYAKIT JANTUNG,†Jurnal Teknik Informatika Kaputama (JTIK), vol. 3, no. 1, pp. 22 - 28, 2019.
D. B. Umadevi dan M. Snehapriya, “A Survey on Prediction of Heart Disease Using Data Mining Techniques,†International Journal of Science and Research (IJSR), vol. 6, no. 4, pp. 2228 - 2232, 2017.
A. Jain, M. Ahirwar dan R. Pandey, “A Review on Intutive Prediction of Heart Disease Using Data Mining Techniques,†International Journal of Computer Sciences and Engineering, vol. 7, no. 7, pp. 109 - 113, 2019.
R. Pandya dan J. Pandaya, “C5.0 Algorithm to Improved Decision Tree with Feature Selection and Reduced Error Pruning,†International Journal of Computer Applications, vol. 117, no. 16, pp. 18 - 21, 2015.
S. F. Rodiyansyah dan E. Winarko, “KlasifikasPosting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan NaiveBayesian Classification,†Indonesian Journal of Computing and Cybernetics System (IJCCS), vol. 6, no. 1, pp. 91 - 100, 2012.
S. Masripah, “Komparasi Algoritma Klasifikasi Data Mining untuk Evaluasi Pemberian Kredit,†BINA INSANI ICT JOURNAL, vol. 3, no. 1, pp. 187-193, 2016.
G. Rahayu dan Mustakim, “Principal Component Analysis untuk Dimensi Reduksi Data Clustering Sebagai Pemetaan Persentase Sertifikasi Guru di Indonesia,†dalam Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9 , Riau, 2017.
J. Han, M. Kamber dan J. Pei, Data Mining Concepts and Techniques, USA: Morgan Kaufmann, 2012.
E. Prasetyo, Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab, Yogyakarta: Andi, 2014.
B. R. Patel dan K. K. Rana, “A Survey on Decision Tree Algorithm For Classification,†International Journal of Engineering Development and Research, vol. 2, no. 1, pp. 1-5, 2014.
A. Jananto, “Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa,†Jurnal Teknologi Informasi DINAMIK, vol. 18, no. 1, pp. 9 - 16, 2013.
E. Buulolo, Data Mining Untuk Perguruan Tinggi, 1st ed. Yogyakarta: Deepublish, 2020.
D. Laia, E. Buulolo, and M. J. F. S. Sirait, “Implementasi Data Mining Untuk Memprediksi Pemesanan Driver Go-Jek Online Dengan Menggunakan Metode Naive Bayes (Studi Kasus: Pt. Go-Jek Indonesia),†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 434–439, 2018.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).