Implementasi K-NN Dalam Analisa Sentimen Riba Pada Bunga Bank Berdasarkan Data Twitter

Authors

  • Rasenda Rasenda STMIK Nusa Mandiri, Jakarta
  • Hendarman Lubis Universitas Bhayangkara Jakarta Raya, Jakarta
  • Ridwan Ridwan STMIK Nusa Mandiri, Jakarta

DOI:

https://doi.org/10.30865/mib.v4i2.2051

Keywords:

Sentiment, Usury, Bank, Twitter, K-NN

Abstract

This study aims to formulate public opinion about bank interest included in the category of usury or not. The method used in this study is the analysis of usury sentiments on bank interest using Twitter data with the K-NN algorithm. Sentiment analysis using the K-NN algorithm gives good results. Evidenced by testing 170 twitter dataset using the K-NN algorithm obtained an accuracy of ± 70.59%. Assisted by the preprocessing process which aims to erase unnecessary parts and also change the form of documents in the form of tweets to a standard form so that classification can be carried out, so that the results of usury sentiment analysis on bank interest can clarify assumptions in the community and serve as a reference in determining appropriate banking products to the needs of customers

Author Biographies

Rasenda Rasenda, STMIK Nusa Mandiri, Jakarta

Ilmu Komputer

Hendarman Lubis, Universitas Bhayangkara Jakarta Raya, Jakarta

Teknik, Teknik Informatika

Ridwan Ridwan, STMIK Nusa Mandiri, Jakarta

Ilmu Komputer

References

M. Majdalawieh, F. Marir, and I. Tiemsani, “Developing Adaptive Islamic Law Business Processes Models for Islamic Finance and Banking by Text Mining the Holy Qur’an and Hadith,†Proc. - 2017 IEEE 15th Int. Conf. Dependable, Auton. Secur. Comput. 2017 IEEE 15th Int. Conf. Pervasive Intell. Comput. 2017 IEEE 3rd Int. Conf. Big Data Intell. Compu, vol. 2018-Janua, pp. 1278–1283, 2018.

A. Kafabih and A. Manzilati, “Analysis of Kafabih, A., & Manzilati, A. (2018). Analysis of Preferable Occupation between Merchant and Islamic Bank Clerk in Bank Syariah Mandiri (BSM) Based on a Hadith about Riba. Iqtishadia, 11(2), 264. https://doi.org/10.21043/iqtishadia.v11i2.2751Pr,†Iqtishadia, vol. 11, no. 2, p. 264, 2018.

A. Louhichi, S. Louati, and Y. Boujelbene, “Market-power, stability and risk-taking: an analysis surrounding the riba-free banking,†Rev. Account. Financ., vol. 18, no. 1, pp. 2–24, 2019.

U. Suharto, “Riba and interest in Islamic finance: semantic and terminological ıssue,†Int. J. Islam. Middle East. Financ. Manag., vol. 11, no. 1, pp. 131–138, 2018.

M. A. Choudhury, A. A. B. Rahman, and A. Hasan, “Trade versus riba in the QurʾÄn with a critique of the role of bank-saving,†International Journal of Law and Management, vol. 60, no. 2. pp. 701–716, 2018.

Z. Jianqiang and G. Xiaolin, “Comparison research on text pre-processing methods on twitter sentiment analysis,†IEEE Access, vol. 5, no. c, pp. 2870–2879, 2017.

A. Rane and A. Kumar, “Sentiment Classification System of Twitter Data for US Airline Service Analysis,†Proc. - Int. Comput. Softw. Appl. Conf., vol. 1, pp. 769–773, 2018.

B. Melli and M. Allahyarifard, “It-Based Usury Free Financial Innovations,†vol. 4, no. 1, pp. 39–49, 2019.

R. N. Chory, M. Nasrun, and C. Setianingsih, “Sentiment analysis on user satisfaction level of mobile data services using Support Vector Machine (SVM) algorithm,†Proc. - 2018 IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 194–200, 2019.

F. S. Fitri, M. N. S. Si, and C. Setianingsih, “Sentiment analysis on the level of customer satisfaction to data cellular services using the naive bayes classifier algorithm,†Proc. - 2018 IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 201–206, 2019.

A. Bayhaqy, S. Sfenrianto, K. Nainggolan, and E. R. Kaburuan, “Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes,†2018 Int. Conf. Orange Technol. ICOT 2018, pp. 1–6, 2018.

Mihuandayani, E. Utami, and E. T. Luthfi, “Text mining based on tax comments as big data analysis using SVM and feature selection,†2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, pp. 537–542, 2018.

Downloads

Published

2020-04-25

Issue

Section

Articles