Prediksi Jumlah Kunjungan Wisata Mancanegara Dengan Algoritma Backpropagation

Authors

  • Rini Sovia Universitas Putra Indonesia YPTK, Padang
  • Musli Yanto Universitas Putra Indonesia YPTK, Padang http://orcid.org/0000-0001-7063-7929
  • Putri Melati Universitas Putra Indonesia YPTK, Padang

DOI:

https://doi.org/10.30865/mib.v4i2.2048

Keywords:

Destinations, Travel, Predictions, Artificial Neural Networks, Backpropagation Algorithms

Abstract

Bukittinggi City is  known as a tourist destination that is very attractive in foreign tourist interest. Diverse types of tours are presented naturally and man-made the beauty of mountains, valleys and the beauty of the existing architectural buildings is Bukittinggi Clock Tower. Not only that, the type of culinary tourism and traditional market snacks are also an attraction for foreign tourists to travel in the city of Bukittinggi. In this study, the problem that will be discussed is the process of predicting tourist visits conducted by foreign tourists to the city of Bukittinggi. The prediction process uses the concept of artificial neural network backpropagation algorithm. The data set that will be used as a discussion is the data foreign tourist visits recorded in the Tourism Office of Bukittinggi City from 2018 to 2019. The prediction results generated with the concept of artificial neural network backpropagation algorithm produce output numbers of number of visits with an accuracy value of 95,64%  and level value the resulting error is 4,36%. The benefits generated from this research are helping the government of the city of Bukittinggi especially the Tourism Office in providing input to manage the tourism sector.

Author Biographies

Rini Sovia, Universitas Putra Indonesia YPTK, Padang

Fakultas Ilmu Komputer, Program Studi Teknik Informatika

Musli Yanto, Universitas Putra Indonesia YPTK, Padang

Fakultas Ilmu Komputer, Program Studi Teknik Informatika

Putri Melati, Universitas Putra Indonesia YPTK, Padang

Fakultas Ilmu Komputer, Program Studi Teknik Informatika

References

Arianti, Desi, 2014, Pengaruh Sektor Pariwisata Terhadap Perekonomian dan Keruangan Kota Bukittinggi (Pendekatan Analisis Input Output), Jurnal Wilayah dan Lingkungan, Vol.2 No.3.

Sanesta, Aldian, 2015, Strategi Pengembangan Kepariwisataan di Kota Bukittinggi, Jurnal FISIP Volume 1 No. 2.

Ahyuni dan Mariya, Sri, 2015, minat wisatawan asing berkunjung ke objek wisata di wilayah bagian selatan provinsi sumatera barat, Jurnal Geografi fakultas ilmu sosial Unversitas Negeri Padang, Vol.4, No.2.

Chang-Jui Lin, Hsueh-Fang Chen, Tian-Shyug Lee, 2011, Forecasting Tourism Demand Using Time Series, Artificial Neural Networks and Multivariate Adaptive Regression Splines: Evidence from Taiwan, nternational Journal of Business Administration Vol. 2, No. 2;

Eka Pandu Cynthia1, Edi Ismanto, 2017, Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau eminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 9.

Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko,2006, Algoritma Back Propagation Neural Network Untuk Pengenalan Pola Karakter Huruf Jawa, Jurnal Masyarakat Informatika, Vol: 1, No: 1.

Kristian Adi Nugraha, Albertus Joko Santoso, Thomas Suselo, 2013, algoritma backpropagation pada jaringan saraftiruan untuk pengenalan pola wayang kulit, Seminar Nasional Informatika (semnasIF 2013).

Wayan Oger Vihikan, I Ketut Gede Darma Putra, I Putu Arya Dharmaadi, 2017, Foreign Tourist Arrivals Forecasting Using Recurrent Neural Network Backpropagation Through Time, TELKOMNIKA, Vol.15, No.3.

Yue-Gang Songa, Yu-Long Zhou, Ren-Jie Han, 2018, Neural networks for stock price prediction, journal of Difference Equations and Applications.

Jamal, A., Suripto, S., Syahputra, R. (2015). MultiBand Power System Stabilizer Model for Power

Flow Optimization in Order to Improve Power System Stability. Journal of Theoretical and Applied

Information Technology (JATIT), 80(1), pp. 116-123.

Nabilla Putri Sakinah, Imam Cholissodin, Agus Wahyu Widodo, 2018, Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 2, No.7.

Rini Sovia, Musli Yanto, Widya Nursanty, 2016, Implementation Of Signature Recognition By Using Backpropagation, UPI YPTK Journal of Computer Science and Information Technology.

J. J. Siang, Jaringan Syaraf Tiruan dan Pemrograman menggunakan MATLAB, Yogyakarta: ANDI, 2005

Downloads

Published

2020-04-25

Issue

Section

Articles