Implementasi Algoritma Neural Network dalam Memprediksi Tingkat Kelulusan Mahasiswa
DOI:
https://doi.org/10.30865/mib.v4i2.2035Keywords:
Graduation Rate, Neural Network, Multi-Layer Perceptron, Backpropagation, Prediction AccuracyAbstract
Higher education institutions are demanded to be quality education providers. One of the instruments used by the government to measure the quality of education providers is the number of graduates. The higher the graduation level, the better the quality of education and this good quality will positively influence the value of accreditation given by BAN-PT. Therefore, in this study the researchers provided input for research conducted at Bhayangkara Jakarta Raya University to predict student graduation rates using the Neural Network algorithm. Neural Network is one method in machine learning developed from Multi Layer Perceptron (MLP) which is designed to process two-dimensional data. Neural Network is included in the Deep Neural Network type because of its deep network level and is widely implemented in image data. Neural Network has two methods; namely classification using feedforward and learning stages using backpropagation. The way Neural Network works is similar to MLP, but in Neural Network each neuron is presented in two dimensions, unlike MLP where each neuron is only one dimensional in size. The prediction accuracy obtained is 98.27%.
References
I. P. Fandy and F. Ardian, “Optimalisasi Neural Network dengan Particle Swarm Optimization Untuk Prediksi Kelulusan Mahasiswa,†Inform. dan RPL, vol. 8, no. March, pp. 139–150, 2019.
A. Azahari, Y. Yulindawati, D. Rosita, and S. Mallala, “Komparasi Data Mining Naive Bayes dan Neural Network memprediksi Masa Studi Mahasiswa S1,†JTIIK, vol. 6, no. 6, p. 25126, 2019.
D. Kusumawati, W. W. Winarno, and M. R. Arief, “Prediksi Kelulusan Mahasiswa Menggunakan Metode Neural Network dan Particle Swarm Optimization,†Semnasteknomedia Online, vol. 3, no. 1, pp. 3-8–37, 2015.
M. Rohman,A., dan Rochcham, “Komparasi Metode Klasifikasi Data Mining Untuk Prediksi Kelulusan Mahasiswa,†J. Neo Tek., vol. 5, no. 1, 2019.
M. D. Yalidhan, “Implementasi Algoritma Backpropagation Untuk Memprediksi Kelulusan Mahasiswa,†Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 2, p. 169, 2018.
A. N. Noor, “Prediksi Siswa Lulus Tidak Tepat Waktu Menggunakan Backpropagation Neural Network,†J. Hum. Teknol., vol. 3, no. 1, pp. 8–15, 2018.
D. Kartini, “Penerapan Data Mining dengan Algoritma Neural Network (Backpropagation) Untuk Prediksi Lama Studi Mahasiswa,†Pros. Semin. Nas. Sisfotek, vol. 3584, pp. 235–241, 2017.
U. T. Suryadi, “Komparasi Support Vector Machine dan Neural Network untuk Prediksi Kelulusan Sertifikasi Benih Kentang,†Semin. Nas. Inform., vol. 1, no. 1, pp. 308–314, 2015.
M. Zainuddin, “Metode Klasifikasi Berbasis Particle Swarm Optimization (PSO) Untuk Prediksi Kelulusan Tepat Waktu Mahasiswa,†J. Ilm. Teknol. Inf. Asia, vol. 13, no. 1, p. 1, 2018.
R. Ansari, “Prediksi Kelulusan Mahasiswa dengan Jaringan Syaraf Tiruan,†J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 1, no. 1, pp. 18–23, 2016.
Masrizal and H. Atma, “Prediksi Kelulusan Mahasiswa STMIK Dumai Menggunakan Jaringan Syaraf Tiruan,†J. Inform., vol. 9, no. 2, pp. 9–14, 2017.
E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network,†J. Ilm. MATRIK, vol. 20, no. April, pp. 21–30, 2018.
U. Budiyanto and T. Fatimah, “Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Jaringan Syaraf Tiruan,†SEMNASTIK, pp. 152–160, 2019.
M. R. Lubis, “Metode Hybrid Particle Swarm Optimization - Neural Network Backpropagation Untuk Prediksi Hasil Pertandingan Sepak Bola,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, p. 71, 2017.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).