Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019

Agil Aditya, Ivan Jovian, Betha Nurina Sari

Abstract


Clustering is an activity that aims to group a data that has a similarity between one data with another data. K-Means clustering is a non-hierarchical data clustering method that attempts to partition existing data into one or more clusters / groups. In this study clustering was conducted using the K-Means algorithm using data on the achievements of the National Middle School National Examination in 2018 obtained from the official website of the Center for Education and Culture Assessment of the Ministry of Education and Culture of the Republic of Indonesia. The results of the cluster with the K-Means algorithm are obtained for cluster 1 there are 14 provinces, cluster 2 there are 5 provinces, and cluster 3 there are 15 provinces with cluster 1 level is a cluster with a high national test score, cluster 2 is a cluster with a low national test score and a cluster 3 is a cluster with moderate national examination scores. While the results of the evaluation of the K-Means algorithm with the number of clusters 3 produce an evaluation value of Connectivity 11,916, Dunn 0.246 and Silhouette 0.464.


Keywords


Clustering, Data Mining, K-Means, Euclidean Distance, National Exam

Full Text:

PDF

References


M. Nishom, “Perbandingan Akurasi Euclidean Distance , Minkowski Distance , dan Manhattan Distance pada Algoritma K- Means Clustering berbasis Chi-Square,†J. Inform. J. Pengemb. IT, vol. 04, no. 01, pp. 20–24, 2019.

M. Anggara, H. Sujiani, and H. Nasution, “Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness,†J. Sist. dan Teknol. Inf., vol. 1, no. 1, pp. 1–6, 2016.

M. H. Adiya and Y. Desnelita, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,†J. Nas. Teknol. DAN Sist. INFORMAS, vol. 05, no. 1, pp. 17–24, 2019.

F. L. Sibuea and A. Sapta, “PEMETAAN SISWA BERPRESTASI MENGGUNAKAN METODE K-MEANS CLUSTERING,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. IV, no. 1, 2017.

T. W. P. A.A.Ngr Wisnu Gautama, Yudha Purwanto, “Analisis Pengaruh Penggunaan Manhattan Distance Pada Algoritma Clustering Isodata ( Self- Organizing Data Analysis Technique) Untuk Sistem Deteksi Anomali Trafik,†e-Proceeding Eng., vol. 2, no. 3, pp. 7404–7411, 2015.

R. Andrea, S. Palupi, and S. Qomariah, “CLUSTERING TIPE BELAJAR SISWA SMKN 2 PENAJAM PASER UTARA DENGAN PENERAPAN METODE DATA MINING K-MEANS DAN FUZZY C-MEANS ( FCM ) CLUSTER ANALYSIS FOR LEARNING STYLE OF VOCATIONAL HIGH SCHOOL STUDENT USING K-MEANS AND FUZZY C-MEANS ( FCM ),†J. Penelit. Pos dan Inform., vol. 7, no. 2, pp. 121–128, 2017.

C. D. Rumiarti and I. Budi, “SEGMENTASI PELANGGAN PADA CUSTOMER RELATIONSHIP MANAGEMENT DI PERUSAHAAN RITEL: STUDI KASUS PT GRAMEDIA ASRI MEDIA,†J. Sist. Inf. ( J. Inf. Syst. ), vol. 13, pp. 1–10, 2017.

R. Rizaldi, A. Kurniawati, and C. V. Angkoso, “Implementasi Metode Euclidean Distance untuk Rekomendasi Ukuran Pakaian pada Aplikasi Ruang Ganti Virtual,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 129, 2018.

A. D. Savitri, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Metode K-Means Clustering Berdasarkan Model RFM Pada Klinik Kecantikan (Studi Kasus : Belle Crown Malang),†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2957–2966, 2018.

A. F. Khairati, A. A. Adlina, G. F. Hertono, and B. D. Handari, “Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA,†Pros. Semin. Nas. Mat., vol. 2, pp. 161–170, 2019.

B. N. Sari and A. Primajaya, “Penerapan Clustering Dbscan untuk Pertanian Padi di Kabupaten Karawang,†JIKO (Jurnal Inform. dan Komputer) STMIK AKAKOM, vol. 4, no. 1, pp. 28–34, 2019.

S. M. Kim, M. I. Peña, M. Moll, G. Giannakopoulos, G. N. Bennett, and L. E. Kavraki, “An evaluation of different clustering methods and distance measures used for grouping metabolic pathways,†Proc. 8th Int. Conf. Bioinforma. Comput. Biol. BICOB 2016, no. BICoB, pp. 115–122, 2016.

“Laporan Hasil Ujian Nasional,†2018. [Online]. Available: https://hasilun.puspendik.kemdikbud.go.id/.

A. E. Wicaksono, “Implementasi Data Mining Dalam Pengelompokan Peserta Didik di Sekolah untuk Memprediksi Calon Penerima Beasiswa Dengan Menggunakan Algoritma K-Means (Studi Kasus SMA N 6 Bekasi),†Jur. Tek. Inform. Univ. Gunadarma, vol. 21, no. 3, pp. 206–216, 2016.

N. Puspitasari, U. Mulawarman, H. Haviluddin, and U. Mulawarman, “PENERAPAN METODE K-MEANS DALAM PENGELOMPOKKAN CURAH HUJAN,†Proc. Semin. Nas. Ris. Ilmu Komput. (SNRIK 2016), vol. I, no. December, 2016.

S. F. Putra, R. Pradina, and I. Hafidz, “Feature Selection pada Dataset Faktor Kesiapan Bencana pada Provinsi di Indonesia Menggunakan Metode PCA (Principal Component Analysis),†J. Tek. ITS, vol. 5, no. 2, pp. 5–9, 2016.




DOI: https://doi.org/10.30865/mib.v4i1.1784

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MEDIA INFORMATIKA BUDIDARMA

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



JURNAL MEDIA INFORMATIKA BUDIDARMA
Universitas Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.