Klasifikasi Keatraktifan e-Commerce Indonesia Menggunakan Algoritma Regresi Logistik

Authors

  • Agus Riyanto STMIK Nusa Mandiri Jakarta IBM Bekasi
  • Richky Faizal Amir Universitas Bina Sarana Informatika, Jakarta

DOI:

https://doi.org/10.30865/mib.v4i2.1717

Keywords:

e-Commerce, Logistics Regression, Weka, Response Variable or Predictor Variable

Abstract

The rapid development of the internet gives a significant influence in various aspects of life, data mining is the search for value-added processes one of a series of knowledge discovery in databases (KDD). Utilization of data mining can be seen from two aspects, namely commercial and scientific. The collection of test datasets is done by observing the research object on the analysis site that provides vital information and forecast data for the local e-commerce web. The study was conducted by exploration and experimentation, the standard research method used in testing is the cross industry standard process for data mining (CRISP-DM) which consists of 6 phases with the Weka framework 3-8-3. Logistic regression algorithm is a method of data analysis that formulates the response variable with one or more predictor variables. The results of testing the value of e-commerce attractiveness in the confusion matrix, 5 are categorized as having high probability of investment objectives and profiles, 1 are categorized as having good investment probability prospects, 2 are categorized as having good investment probabilities with promising profiles and 1 with promising investment probabilities and profiles not good and 31 in terms of probability and profile is not good. While the results for the Origin class confusion matrix are 31 identified from local Indonesia with confusion 5, 4 from Global with uncertainty 0

Author Biographies

Agus Riyanto, STMIK Nusa Mandiri Jakarta IBM Bekasi

Ilmu Komputer, Software Engineer

Richky Faizal Amir, Universitas Bina Sarana Informatika, Jakarta

Teknologi Informasi, Sistem Informasi

References

W. Febriantoro, “Kajian Dan Strategi Pendukung Perkembangan E-Commerce Bagi Umkm Di Indonesia,†J. MANAJERIAL, vol. 17, no. 2, p. 184, 2018.

M. Pradana, “Klasifikasi Bisnis E-Commerce Di Indonesia,†Modus, vol. 27, no. 2, p. 163, 2016.

S. Dewi, “Pada Prediksi Keberhasilan Pemasaran Produk Layanan Perbankan,†Techno Nusa Mandiri, vol. XIII, no. 1, pp. 60–66, 2016.

J. Eska, “Penerapan Data Mining Untuk Prekdiksi Penjualan Wallpaper Menggunakan Algoritma C4.5 STMIK Royal Ksiaran,†JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 2, pp. 9–13, 2016.

M. E. Lasulika, “Prediksi Harga Komoditi Jagung Menggunakan K-Nn Dan Particle Swarm Optimazation Sebagai Fitur Seleksi,†Ilk. J. Ilm., vol. 9, no. 3, p. 233, 2017.

P. Juwita and P. Hendikawati, “Ketepatan Klasifikasi Metode Regresi Logistik dan CHAID dengan Pembobotan Sampel,†Prism. Pros. Semin. Nas. Mat., vol. 1, no. 3, pp. 684–695, 2018.

R. D. Bekti, N. Pratiwi, M. T. Jatipaningrum, and D. Auliana, “Analisis Pengaruh Lokasi Dan Karakteristik Konsumen Dalam Memilih Minimarket Dengan Metode Regresi Logistik Dan Cart,†Media Stat., vol. 10, no. 2, p. 119, 2017.

Downloads

Published

2020-04-25

Issue

Section

Articles