Analisis Sentimen Terhadap Kandidat Presiden Republik Indonesia Pada Pemilu 2019 di Media Sosial Twitter

Authors

  • Cahyo Prianto Politeknik Pos Indonesia
  • Nisa Hanum Harani Politeknik Pos Indonesia
  • Indra Firmansyah Politeknik Pos Indonesia

DOI:

https://doi.org/10.30865/mib.v3i4.1549

Abstract

The development of technology today has been growing rapidly and has an impact on the behavior patterns of people who feel it. The Ministry of Communication and Information (KOMINFO) released a data that of 265 million people of Indonesia, there are around 54% have used internet technology or about 143 million people. In one survey IDN Research Institute said that there are three Social Media that are widely used in Indonesia, namely Facebook, Instagram and Twitter. This study focuses on extracting data in the form of text produced from social media twitter that responds to the account of the RI presidential candidates in the 2019 elections. Sentiment analysis is obtained through tweet classification using sentiment analysis tools such as NRC Lexicon and Bing Lexicon so that information is obtained in the form of positive polarity and negative polarity from community tweets towards the Presidential candidates in the 2019 elections. Using March data before the 2019 election, for candidate 01 Joko Widodo, the NRC Lexicon analysis gave a value of 249 and bing lexicon of 267 with an average value of 0.11, while for candidate 02 Prabowo Subianto the NRC Lexicon analysis gave a value of 195 and bing lexicon of 204 with an average value of 0.085. Using april data after the 2019 election. Candidate 01 Joko Widodo still received a lot of responses from netizens but the sentiment value shifted more negatively compared to candidate 02 Prabowo Subianto. For candidate 01 Joko Widodo the NRC Lexicon analysis gave a value of 17 and bing lexicon of -273 with an average value of -0,246, while for candidate 02 Prabowo Subianto the NRC Lexicon analysis gave a value of 238 and bing lexicon of -73 with an average value of -0.02430939.

References

R. Primartha, Belajar Machine Learning, Bandung : Informatika, 2018.

D. Hutabarat, "Kementerian Kominfo Sebut Pengguna Internet Indonesia Capai 54 Persen," Kementrian Komunikasi dan Informatika, Jakarta, 2018.

S. K. Ravindran, Mastering Social Media Mining With R, Birmingham: Packt Publishing, 2015.

I. R. Institut, Indonesia Millenial Report, IDN Research Institut, 2019.

S. W. S. A. D. Faishol Nur Huda, "Analisis Sentimen masyarakat Terhadap Calon Presiden Indonesia 2014 Berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier," ITSMART, vol. 2, no. 2, pp. 35 - 42, 2013.

A. D. N. Mulawarman, "Perilaku Penggunaan Media Sosial Beserta Implikasinya Ditinjau dari prespektif Psikologi Sosial Terapan," Buletin Psikologi, vol. 25, no. 1, pp. 36 - 44, 2017.

D. K. Wisiastuti, "Twitter sebagai Media Alternatif Informasi Publik," UIN Yogyakarta, Yogyakarta, 2014.

B. P. D. P. Bahasa, Kamus Besar Bahasa Indonesia, Jakarta: Kementrian Pendidikan dan Kebudayaan Republik Indonesia, 2016.

N. A. Vidya, "Twitter Sentiment Analysis Terhadap Brand Reputation : Studi Kasus PT XL Axiata Tbk," Universitas Indonesia, Jakarta, 2015.

M. R. Faisal, Klasifikasi Dengan Bahasa Pemrograman R, Banjarmasin: Indonesia Net Developer Community - INDC, 2019.

P. U. Gio, Belajar Bahasa Pemrograman R, Medan: USU Press, 2017.

M. R. Faisal, Pengenalan Bahasa Pemrograman R, Banjarmasin: Indonesia Net Developer Community - INDC, 2016.

E. W. Ira Zulfa, "Sentimen Analisis Tweet Berbahasa Indonesia dengan Deep Beliefe Network," IJCCS, vol. 11, no. 2, pp. 187 - 198, 2017.

Hartanto, "Text Mining dan Sentimen Analisis Twitter Pada Gerakan LGBT," INTUISI, vol. 9, no. 1, pp. 18 - 25, 2017.

A. S. Ahmad Fathan Hidayatullah, "Analisis Sentimen dan Klasifikasi Kategori Terhadap Tokoh Publik pada Twitter," in Seminar Nasional Informatika , Yogyakarta, 2014.

A. A. P. J. I. Indonesia, Infografi Penetrasi dan Perilaku Pengguna Internet Indonesia, Jakarta: Technopreneur, 2017.

Downloads

Published

2019-10-31