Pemanfaatan Algortima K-Means Clustering Sebagai Pengamanan Pencurian Buah Kelapa Sawit Se-Distrik Tandun PT. Perkebunan Nusantara V
DOI:
https://doi.org/10.30865/mib.v3i4.1443Abstract
Oil palm fruit theft at PT. Perkebunan Nusantara V still occurs frequently, especially in one district, Tandun District which has 6 oil palm and rubber plantations. The high rate of theft of oil palm fruit causes a decrease in the production of oil palm fruit and palm kernel. This study discusses the use of the K-Means Clustering algorithm as one of the data mining algorithms in grouping data on palm oil theft in the oil palm plantation area of Tandun District. With a number of theft data, this study enables the discovery of the potential for theft of oil palm fruit in the location of oil palm plantations at low, medium and high levels. K-Means Clusering algorithm calculation uses 3 supporting parameters, namely the area of each afdeling, the number of fruits that have been saved, and the number of fruits that have been stolen. After knowing the locations that have the potential for theft of oil palm fruit, the company can implement a strategy to safeguard those potential locations.
References
E. Prasetyo, Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. yogyakarta: ANDI, 2014.
A. Asroni, H. Fitri, and E. Prasetyo, “Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik),†Semesta Tek., vol. 21, no. 1, pp. 60–64, 2018.
N. Rofiqo, A. P. Windarto, and D. Hartama, “Penerapan Clustering Pada Penduduk Yang Mempunyai Keluhan Kesehatan Dengan Datamining K-Means,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 216–223, 2018.
M. G. Sadewo, A. Eriza, A. P. Windarto, and D. Hartama, “Algoritma K-Means Dalam Mengelompokkan Desa / Kelurahan Menurut Keberadaan Keluarga Pengguna Listrik dan Sumber Penerangan Jalan Utama Berdasarkan Provinsi,†Semin. Nas. Teknol. Komput. Sains, pp. 754–761, 2019.
H. K. Saputra, “ANALISIS DATA MINING UNTUK PEMETAAN MAHASISWA YANG MEMBUTUHKAN BIMBINGAN DAN KONSELING MENGGUNAKAN ALGORITMA NAÃVE BAYES CLASSIFIER Hadi Kurnia Saputra 1,†J. Teknol. Inf. Pendidik., vol. 11, no. 1, pp. 14–26, 2018.
S. S. P. Luka, I. M. Candiasa, and K. Y. E. Aryanto, “ANALISIS PEMBENTUKAN KELOMPOK DISKUSI PANEL SISWA MENGGUNAKAN ALGORITMA FUZZY C-MEANS DAN K-MEANS,†J. Pendidik. Teknol. dan Kejuru., vol. 16, no. 2, pp. 267–277, 2019.
Y. Kusumawardani, A. Hamzah, and Suraya, “PERBANDINGAN METODE CLUSTERING MENGGUNAKAN HIERARCHICAL CLUSTERING DAN PARTITIONAL CLUSTERING UNTUK MENGELOMPOKKAN DOKUMEN BERITA,†J. Scr., vol. 5, no. 2, pp. 245–254, 2018.
R. R. Putra and C. Wadisman, “IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS,†J. Inf. Technol. Comput. Sci., vol. 1, no. 1, pp. 72–77, 2018.
Elly Muningsih and S. Kiswati, “Penerapan Metode K-Means Untuk Clustering Produ
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).