Identifikasi Citra berdasarkan Gigitan Ular menggunakan Metode Active Contour Model dan Support Vector Machine

 (*)Dhiya Ulhaq Dewangga Mail (Universitas Telkom, Indonesia)
 Adiwijaya Adiwijaya (Universitas Telkom, Indonesia)
 Dody Qori Utama (Universitas Telkom, Indonesia)

(*) Corresponding Author

Abstract

Tropical countries have a warm and humid climate are suitable habitat for the lives of reptile animals, especially snakes. Snakes are a type of reptile animal that is widely found in tropical countries, especially in Indonesia. The worst thing that happens when meeting a snake is the bite of snake. If the bite comes from a venomous snake it can cause a more serious problem than the bite from non-venomous snake is, which can cause paralysis, disability, and the worst is death. According to the WHO (World Health Organization) an estimated 5.4 million people are bitten by snakes each year with almost 2.7 million being bitten by venomous snakes and get affected symptoms. Around 81,000 to 138,000 people die every year. This research uses image processing technic to make the identification system of snake bites whether venomous or non-venomous. The method used in this system is Active Contour Model and Support Vector Machine. By using these methods, the highest accuracy is obtained in the best of SVM kernel, on RBF kernel and Polynomial kernel.

Full Text:

PDF


Article Metrics

Abstract view : 831 times
PDF - 400 times

References

juragandavin. Mendefinisikan ciri-ciri ular berbisa. 18 April 2016. http://www.juragandavin.com/mendefinisikan-ciri-ciri-ular-berbisa. [Diakses 8 Oktober 2018].

WHO. Snakebite envenoming. 20 Februari 2018. http://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming. [Diakses 9 Oktober 2018].

LIPI. Pendataan Kasus Gigitan Ular Berbisa Terabaikan. 26 Oktober 2016. http://lipi.go.id/lipimedia/pendataan-kasus-gigitan-ular-berbisa-terabaikan/16730. [Diakses 8 Oktober 2018].

Williams, Donna J., and Shah, Mubarak. (1991). A Fast Algorithm for Active Contours and Curvature Estimation. Jurnal. Florida: Department of Computer Science, University of Florida, Orlando.

Cai, Y.D., Ricardo, P.W., Jen, C.H. and Chou, K.C., (2004). Application of SVM to predict membrane protein types. Journal of Theoretical Biology, 226(4), pp.373-376.

Budianto, Aris. (2019). Perbandingan K-Nearest Neighbor (KNN) Dan Support Vector Machine (SVM) Dalam Pengenalan Karakter Plat Kendaraan Bermotor. 10.20961/jiptek.v11i1.18018.

Putra, Rayiemas Manggala., Adiwijaya., Utama, Dody Qori. (2019). Snake bite classification using Chain code and K nearest neighbour. Journal of Physics: Conference Series. 1192. 012015. 10.1088/1742-6596/1192/1/012015.

Z, H. Pradana. (2016). Beef Cattle Weight Determine by Using Digital Image Processing. pp. 13-16.

M. Haralick, Robert. 1973. Textural Features for Image Classification. IEEE.USA.

Soelaiman, R., Agustianty, S., Purwananto, Y., & Purnama, I. E. (2012). Jurnal Ilmu Komputer Dan Informasi, 2(1), 25.

Prijono, Agus., Wijaya, Marvin Ch. (2007). Pengolahan Citra Digital Menggunakan MatLAB Image Processing Toolbox. Bandung : Informatika.

Duda, Richard O., Hart, Peter E. (1973). Pattern Classification and Scene Analyst. Wiley.

Budiharto, Widodo. (2016). Machine Learning and Computational Intelligence, Yogyakarta: CV. ANDI OFFSET.

Nugroho, Anto Satriyo., Witarto, Arief Budi., Handoko, Dwi. (2003). Support Vector Machine Teori dan Aplikasinya dalam Bioinformatika. IlmuKomputer.Com.

Muis, I. A., Affandes, M., Muis, I. A., P. Studi, T. Informatika, and F. Sains. (2015). Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radial Basis Function (RBF) Pada Klasifikasi Tweet. J. Sains, Teknol. dan Ind., vol. 12, no. 2, pp. 189–197.

Cristianini, N. and Shawe-Taylor, J., (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.

Nishioka, S. D. A., Silveira, P. V. P., and Bauab, F. A. (1995). Bite marks are useful for the differential diagnosis of snakebite in brazil. Wilderness & environmental medicine, 6(2):183–188.

Powers, D. M. (2011). Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Identifikasi Citra berdasarkan Gigitan Ular menggunakan Metode Active Contour Model dan Support Vector Machine

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 JURNAL MEDIA INFORMATIKA BUDIDARMA





JURNAL MEDIA INFORMATIKA BUDIDARMA
STMIK Budi Darma
Secretariat: Sisingamangaraja No. 338 Telp 061-7875998
Email: mib.stmikbd@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.