Prediksi Jumlah Pendapatan Beasiswa PPA dan BBP Menggunakan Jaringan Syaraf Tiruan Backpropagation
DOI:
https://doi.org/10.30865/mib.v3i4.1327Abstract
STIKOM Tunas Bangsa is a world education institution located in the area of North Sumatra, where every semester for students who get PPA and BBP scholarships, from the number of students who come from it, not all students get scholarships, and at least get scholarships provided. Each student has the same criteria as the number of scholarships, with a minimum number of scholarship recipients. Therefore, to determine the number of participants who receive PPA scholarships in each country STIKOM Tunas Bangsa. In predicting the number of Kouta scholarship recipients using Backpropagation artificial nerves using data from 2015 to 2019 the data used from previous data has been received by the STIKOM Tunas Bangsa campus. With the existence of this artificial neural network to predict 2020 the number of PPA and BBP scholarship recipients at STIKOM Tunas Bangsa.
References
P. Oktavia, “Sitem Pendukung Keputusan Seleksi Penerimaan Beasiswa Dengan Metode Weighted Product Pada SMP Negeri 1 Parung Berbasis Web,†J. Inform. Univ. PAMULA, vol. 3, no. 2, pp. 80–86, 2018.
A. Sudarsono, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Backpropagation (Studi Kasus Di Bengkulu),†J. Media Infotama, vol. 12, no. 1, pp. 61–69, 2016.
Novia Lestari and L. L. Van FC, “Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi),†J. Teknol. Inf. Komun. Digit. Zo., vol. 8, no. 1, pp. 10–24, 2017.
W. M. Dessy and A. Irawan, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah,†J. Komput. dan Inform., vol. 1, no. 1, pp. 45–51, 2012.
Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA (Studi kasus: Prediksi Prestasi Siswa SMAN 4 Ambon),†J. Mat. Integr., vol. 11, no. 2, pp. 149–160, 2015.
Y. D. Lestari, “Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Backropagation,†J. ISD, vol. 2, no. 1, pp. 40–46, 2017.
B. Satria, “Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 674–684, 2018.
M. Yanto, S. Defit, and G. W. Nurcahyo, “Analisis Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Reservasi Kamar Hotel Dengan Metode Backpropagation,†J. KomTekInfo Fak. Ilmu Komput., vol. 2, no. 1, pp. 34–39, 2015.
A. S. Ritonga and S. Atmojo, “Pengembangan Model Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Mahasiswa Baru di PTS Surabaya (Studi Kasus Universitas Wijaya Putra),†J. Ilm. Teknol. Inf. Asia, vol. 12, no. 1, pp. 15–24, 2018.
M. H. Dar, “Penerapan Metode Backpropagation Neural Network Untuk Memprediksi Produksi Air,†Maj. Ilm. INTI, vol. 12, no. 2, pp. 203–208, 2017.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).