JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI JUMLAH PRODUKSI DAGING SAPI BERDASARKAN PROVINSI
DOI:
https://doi.org/10.30865/komik.v2i1.941Abstract
Prediction is a process for estimating how many needs will be in the future. This study aims to predict the amount of beef production by province. Beef is one source of protein which is also a high value comodities. Meat production in Indonesia in general tends to increase by around 2.76% per year. But along with the increase in beef production in Indonesia, the level of meat consumption in Indonesia tends to fluctuate in recent years. Imports are the most common step taken by the government to meet domestic beef needs. By using the Artificial Neural Network and backpropagation algorithm, it will be predicted the amount of beef production based on the province in order to determine the steps to meet domestic beef demand based on the amount of beef consumption in the community. This study uses 11 input variables, namely data from 2005 to 2016 with 1 target, data of 2017. Using 5 architectural models to test the data to be used for prediction, the 11-4-1 model, 11-8-1 , 11-18-1, 11-20-1 and 11-28-1. Obtained the results of the best architectural model is the 11-28-1 architectural model with truth accuracy of 100%, the number of epochs 15 and MSE is 0.008623197. This model will be used in predicting the amount of beef production by province.
Keywords : Beef production, prediction, backpropagatin, Artificial Neural Network
References
Solikhun, A. P. Windarto, Handrizal, and M.Fauzan, “Jaringan Syaraf Tiruan Dalam Memprediksi Sukuk Negara Ritel Berdasarkan Kelompok Profesi Dengan Backpropagation Dalam Mendorong Laju Pertumbuhan Ekonomi,†in Seminar Ilmiah Nasional "Membangun Paradigma Kehidupan Melalui Multidisiplin Ilmu, 2017, pp. 14–31.
Solikhun, A. P. Windarto, Handrizal, and M.Fauzan, “Jaringan Saraf Tiruan Dalam Memprediksi Sukuk Negara Ritel Berdasarkan Kelompok Profesi Dengan Backpropogation Dalam Mendorong Laju Pertumbuhan Ekonomi,†Kumpul. J. Ilmu Komput., vol. 4, no. 2, pp. 184–197, 2017.
A. P. Windarto, “IMPLEMENTASI JST DALAM MENENTUKAN KELAYAKAN NASABAH PINJAMAN KUR PADA BANK MANDIRI MIKRO SERBELAWAN DENGAN METODE BACKPROPOGATION,†J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 12–23, 2017.
A. P. Windarto, L. S. Dewi, and D. Hartama, “Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm,†Int. J. Recent Trends Eng. Res., vol. 3, no. 10, pp. 1–12, 2017.
Solikhun and M. Safii, “Jaringan Saraf Tiruan Untuk Memprediksi,†J. Sains Komput. Inform., vol. 1, no. 1, pp. 24–36, 2017.
M. Febrina, F. Arina, and R. Ekawati, “Peramalan Jumlah Permintaan Produksi Menggunakan Metode Jaringan Syaraf Tiruan (Jst) Backpropagation,†J. Tek. Ind., vol. 1, no. 2, pp. 174–179, 2013.
Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus : Prediksi Prestasi Siswa SMAN 4 Ambon ),†J. Mat. Integr., vol. 11, no. 2, pp. 149–160, 2015.
S. Kusmaryanto, “Jaringan Saraf Tiruan Backpropagation untuk Pengenalan Wajah Metode Ekstraksi Fitur Berbasis Histogram,†J. EECCIS Vol. 8, No. 2, Desember 2014, vol. 8, no. 2, pp. 193–198, 2014.
A. Sudarsono, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode,†Media Infotama, vol. 12, no. 1, pp. 61–69, 2016.

