Analisa Sentimen Undang-Undang Penganiyaan Menerapkan Algoritma Text Mining Dan TF-IDF

Endhika Endhika

Abstract


People's views on this article, some people think it is necessary because it is important to avoid acts of sexual violence, but some people think the article is not necessary because they think this is a normal thing which is actually considered a trivial thing but can become a behavior. acts of sexual harassment. The problem is that when someone whistles at someone without permission or with disrespectful intentions, it can be considered annoying or inappropriate. It is important to respect personal boundaries and treat others with respect. These views cause uproar in society. Therefore, there is a solution, namely in the form of a solution used in the Text Mining Algorithm to discover new information that was previously unknown and extract valuable information from text automatically from different sources, while the TF-IDF Algorithm is used to determine the frequency value of words. in the document. In this research, sentiment refers to the public's view of the Persecution Law, whether positive or negative. The final result of this sentiment analysis is a positive sentiment value of 56.746% while the negative sentiment value is 43.254%. So it is hoped that it can provide information about the extent to which the Persecution Law can be accepted by society by understanding public sentiment. Apart from that, this research also conceptualizes the Text Mining Algorithm and the TF-IDF Algorithm as powerful tools for analyzing text data in the context of sentiment analysis.

Keywords


Sentiment Analysis; Law; Persecution; Text Mining; TF-IDF

Full Text:

PDF

References


R. Safitri, N. Alfira, D. Tamitiadini, W. W. A. Dewi, and N. Febriani, Analisis Sentimen: Metode Alternatif Penelitian Big Data. Universitas Brawijaya Press, 2021.

I. P. Siregar, KAJIAN DASAR-DASAR HUKUM DAN HUKUM PIDANA. Penerbit P4I, 2022.

S. K. M. K. Laili Cahyani, APLIKASI TEXT MINING DI BIDANG PENDIDIKAN. CV Literasi Nusantara Abadi, 2023.

Q. Liu, X. Liu, J. Cheng, T. Shen, and Y. Tian, Proceedings of the 12th International Conference on Computer Engineering and Networks. Springer Nature Singapore, 2022.

N. Hikmah, “Pemanfaatan Text Mining dalam Pencarian Ayat AlQuran menggunakan TF-IDF dan Cosine Similarity,†J. Antart., vol. 8, pp. 13–22, 2018.

F. Arrifqi, D. Ainiyatul Munawaroh, and J. Hasna Nafila Rahman, “Analisis Persepsi Masyarakat dengan Metode Big Data terhadap Kinerja DPR dalam Memproses RUU PKS,†J. PolGov, vol. 4, no. 2, pp. 265–292, Jan. 2023, doi: 10.22146/polgov.v4i2.3614.

R. A. Sasmita and A. Z. Falani, “Pemanfaatan Algoritma TF/IDF pada sistem Informasi Ecomplaint Handling,†J. Ilm. Lintas Sist. Inf. dan Komput., vol. 27, no. 1, pp. 27–33, 2018.

L. Deng and Y. Liu, Deep Learning in Natural Language Processing. Springer Nature Singapore, 2018.

F. A. Nugraha, N. H. Harani, R. Habibi, and R. M. Awangga, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif.

Y. S. Hartini et al., Prosiding Seminar Nasional Sanata Dharma Berbagi “Pengembangan, Penerapan Dan Pendidikan ‘Sains Dan Teknologi’ Pasca Pandemi.†Sanata Dharma University Press, 2022.

I. Arnawa, “Analisis Sentimen pada Media Sosial Terhadap Perkuliahan Hybrid Menggunakan Algoritma TF IDF dan K Nearest Neighbor,†J. Sist. dan Inform., pp. 40–46, 2022.

F. A. Tamardina, H. Yasin, and D. Ispriyanti, “Analisis Sentimen Review Aplikasi Cryptocurrency Menggunakan Algoritma Maximum Entropy Dengan Metode Pembobotan Tf, Tf-Idf Dan Binary,†J. Gaussian, vol. 11, no. 1, pp. 1–10, 2022, doi: 10.14710/j.gauss.v11i1.34004.

F. N. Rozi and D. H. Sulistyawati, “Klasifikasi Berita Hoax Pilpres Menggunakan Metode Modified K-Nearest Neighbor Dan Pembobotan Menggunakan Tf-Idf,†Konvergensi, vol. 15, no. 1, 2019, doi: 10.30996/konv.v15i1.2828.




DOI: https://doi.org/10.30865/komik.v7i1.8050

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Endhika Endhika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.