Analisa Sentimen Penghapusan Tilang Manual Menjadi Tilang Elektronik Menggunakan Text Mining Dan TermFrequency Inverse Document Frequency (TF-IDF)

Elsa Pratiwi

Abstract


Removing manual ticketing to electronic ticketing is a manual ticketing. Many people complain that the method of ticketing does not comply with procedures, there are misunderstandings in manual ticketing and in manual ticketing this is also an opportunity for extortion. The algorithms that will be used to support the removal of manual traffic tickets from electronic tickets are the Text Mining Algorithm and TF-IDF. The solution is to avoid errors in ticketing by holding electronic tickets using sophisticated CCTV where the image or video results are automatically saved and the data of drivers who violate traffic automatically displays the data of drivers who violate traffic. With the existence of electronic tickets, people are more compliant with traffic and the number of traffic violations has decreased. Using the Text Mining Algorithm and TF-IDF, you will get the results of the percentage of positive and negative sentiment from each public opinion comment via Twitter social media regarding the elimination of manual traffic tickets into electronic tickets, which in turn the results of the comments can be used as a reference for opinions from the results of the comments.

Keywords


Sentiment; Manual Ticketing; Electronic Ticketing; Text Mining; TF-IDF

Full Text:

PDF

References


E. Iskandar, E. Solina, and M. Elsera, “Estariani Iskandar 1, Emmy Solina 2 , Marisa Elsera 3 123,†vol. 1, no. 2, pp. 247–258, 2022.

R. Rahmiati, D. Irfan, A. Agustin, and S. Hediyati, “Aplikasi Pengukur Tingkat Sentimen Pelanggan Berdasarkan Komplain Pelanggan Pln Menggunakan Algoritma K-Nearest Neighbor,†INOVTEK Polbeng - Seri Inform., vol. 5, no. 2, p. 332, 2020.

P. Amelia, V. Widyaswari, and R. S. Perdana, “Klasifikasi Kemacetan Lalu Lintas Kota Malang Melalui Media Twitter Menggunakan Metode Neighbor Weighted K-Nearest Neighbor ( NW-KNN ),†J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 2, pp. 9021–9027, 2019.

R. Ekartika Sahadina, “Pelaksanaan Sistem Tilang Elektronik Dalam Penegakan Kedisiplinan Berlalu Lintas,†vol. 12, no. 1, pp. 2089–7146, 2023.

H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,†J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 243–250, 2019.

V. R. Prasetyo, N. Benarkah, and V. J. Chrisintha, “Implementasi Natural Language Processing Dalam Pembuatan Chatbot Pada Program Information Technology Universitas Surabaya,†Teknika, vol. 10, no. 2, pp. 114–121, 2021.

S. Chamira, “Implementasi Metode Text Mining Frequency-Invers Document Frequency ( Tf-Idf ) Untuk Monitoring Diskusi Online,†vol. 1, no. 3, pp. 97–102, 2022.

M. P. Simatupang and D. P. Utomo, “Analisa Testimonial Dengan Menggunakan Algoritma Text Mining Dan Term Frequency- Inverse Document Frequence (Tf-Idf) Pada Toko Allmeeart,†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 808–814, 2019.

A. Azis Maarif, “Penerapan Algoritma Fuzzy,†Univ. Dian Nusant., 2015.

R. R. A. Siregar, F. A. Sinaga, and R. Arianto, “Aplikasi Penentuan Dosen Penguji Skripsi Menggunakan Metode TF-IDF dan Vector Space Model,†Comput. J. Comput. Sci. Inf. Syst., vol. 1, no. 2, p. 171, 2017.

O. I. Gifari, M. Adha, F. Freddy, and F. F. S. Durrand, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,†J. Inf. Technol., vol. 2, no. 1, pp. 36–40, 2022.




DOI: https://doi.org/10.30865/komik.v7i1.8043

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Elsa Pratiwi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.