Analisa Sentimen Transisi Kendaraan Konvensional Ke Listrik Dengan Menerapkan Algoritma Text Mining dan Term Frequency Inverse Document Frequency (TF-IDF)

Andini Pralabaika

Abstract


The development of transportation technology can have an impact on better human life in order to facilitate movement and meet all the needs of life. But sometimes there are problems that do not support the change in the transition of conventional vehicles to electricity, due to the lack of adequate infrastructure for charging electric energy, inconclusive weather conditions, and the value of prices that are still high, so that the community itself supports and does not support the change in the transition. Therefore, there is a solution that is used in the Text Mining Algorithm: the discovery of new information that was previously unknown and the extraction of valuable information from text automatically from different sources, while the TF-IDF Algorithm is used to determine the frequency value of words in documents. In this research, sentiment refers to people's views on the transition of conventional vehicles to electricity, whether they are positive or negative. The final result of this sentiment analysis is a positive sentiment value of 71.821%, while the negative sentiment value is 28.179%. So it is expected to provide information about the extent to which the transition from conventional to electric vehicles can be accepted by the public by understanding public sentiment. In addition, this research also conceptualizes the Text Mining Algorithm and the TF-IDF Algorithm as powerful tools for analyzing text data in the context of sentiment analysis.

Keywords


Transition, Vehicle, Conventional, Electric, Text Mining, TF-IDF

Full Text:

PDF

References


N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,†STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 2, p. 129, 2021, doi: 10.30998/string.v6i2.10133.

R. A. Sasmita and A. Z. Falani, “Pemanfaatan Algoritma TF/IDF Pada Sistem Informasi Ecomplaint Handling,†J. Link, vol. 27, no. 1, pp. 27–33, 2018.

T. W. D. Sari, “Penerapan Text Mining Dengan Menggunakan Algoritma TF-IF Untuk Klasifikasi Genre Novel,†Pelita Inform. Inf. dan Inform., vol. 10, pp. 29–37, 2021.

A. Z. Z. Abidin and A. Sukmadinata, “Sistem Deteksi Kerusakan pada Sistem Operasi Menggunakan Metode TF - IDF dan Cosine Similarity,†J. Ilm. Inform., vol. 8, no. 2, pp. 6–11, 2020.

A. F. Riyadi, F. R. Rahman, M. A. Nofa Pratama, M. K. Khafidli, and H. Patria, “Pengukuran Sentimen Sosial Terhadap Teknologi Kendaraan Listrik: Bukti Empiris di Indonesia,†Expert J. Manaj. Sist. Inf. dan Teknol., vol. 11, no. 2, p. 141, 2021, doi: 10.36448/expert.v11i2.2171.

M. Metode, T. F. Idf, and D. Algoritma, “Text Mining Untuk Mengklasifikasi Judul Skripsi,†vol. 6, no. 2, pp. 78–83, 2018.

N. K. Widyasanti, I. K. G. Darma Putra, and N. K. Dwi Rusjayanthi, “Seleksi Fitur Bobot Kata dengan Metode TFIDF untuk Ringkasan Bahasa Indonesia,†J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 6, no. 2, p. 119, 2018, doi: 10.24843/jim.2018.v06.i02.p06.

B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,†Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018.

N. Hikmah, “Pemanfaatan Text Mining dalam Pencarian Ayat AlQuran menggunakan TF-IDF dan Cosine Similarity,†J. Antart., vol. 8, pp. 13–22, 2018.

L. Deng and Y. Liu, Deep Learning in Natural Language Processing. Springer Nature Singapore, 2018.

F. A. Nugraha, N. H. Harani, R. Habibi, and R. M. Awangga, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Kreatif.

E. P. Putri, “Implementasi Latent Dirichlet Allocation (Lda) Untuk Pemodelan Topik Faktor Perceraian,†p. 72, 2022.

I. Arnawa, “Analisis Sentimen pada Media Sosial Terhadap Perkuliahan Hybrid Menggunakan Algoritma TF IDF dan K Nearest Neighbor,†J. Sist. dan Inform., pp. 40–46, 2022.

F. N. Rozi and D. H. Sulistyawati, “Klasifikasi Berita Hoax Pilpres Menggunakan Metode Modified K-Nearest Neighbor Dan Pembobotan Menggunakan Tf-Idf,†Konvergensi, vol. 15, no. 1, 2019, doi: 10.30996/konv.v15i1.2828.

F. Rozi, F. Sukmana, and M. N. Adani, “Pengelompokkan Judul Buku dengan Menggunakan Algoritma K-Nearest Neighbor (K-NN) dan Term Frequency – Inverse Document Frequency (TF-IDF),†JIMP J. Inform. Merdeka Pasuruan, vol. 6, no. 3, pp. 1–5, 2021.

J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF - IDF dan K - Nearest Neighbor,†pp. 43–49, 2019.

N. Silalahi and G. L. Ginting, “Analisa Sentimen Masyarakat Dalam Penggunaan Vaksin Sinovac Dengan Menerapkan Algoritma Term Frequence – Inverse Document Frequence ( TF-IDF ) dan Metode Deskripsi,†vol. 3, no. 3, pp. 206–217, 2022, doi: 10.47065/josh.v3i3.1441.




DOI: https://doi.org/10.30865/komik.v7i1.7918

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Andini Pralabaika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.