Implementasi Perbandingan Metode Knn Dan Naive Bayes Dalam Prediksi Tingkat Kegagalan Mahasiswa Teknik Informatika
Abstract
A tertiary institution certainly wants to have students who are successful in their education but there are very many student failures which have quite a bad impact on the image of the name of the Budidarma University campus, students who fail certainly make many parties feel concerned and other impacts occur in the accumulation of data on students who fail and can reduce the existence of a university. It is necessary to predict the failure rate of students at Budi Darma University to enable the campus to carry out strategies and anticipate even greater student failures. Data mining is a branch of computer science that can help predict the tendency of student data to cause failure rates to make it easier to design and anticipate students so that failure rates in the future do not increase. With the use of predictions using a computer in the form of the RapidMiner application with the K-Nearest Neighbor and Naïve Bayes algorithms, it can make it easier to speed up the process of solving problems correctly.
Keywords
Full Text:
PDFArticle Metrics
Abstract view : 558 timesPDF - 207 times
References
A. S. Albahri et al., “Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review,” J. Med. Syst., vol. 44, no. 7, 2020, doi: 10.1007/s10916-020-01582-x.
E. Prasetyo, Data Mining Mengolah Data menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi, 2014.
F. A. Hermawati, Data Mining. Yogyakarta: CV Andi Offset, 2018.
E. Buulolo, Buku Data Mining Untuk Perguruan Tinggi, I. 2020.
M. R. Islam, A. R. M. Kamal, N. Sultana, R. Islam, M. A. Moni, and A. Ulhaq, “Detecting Depression Using K-Nearest Neighbors (KNN) Classification Technique,” Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, no. February, pp. 1–4, 2018, doi: 10.1109/IC4ME2.2018.8465641.
S. Defiyanti, “Integrasi Metode Clustering dan Klasifikasi untuk Data Numerik,” Citee, no. July, pp. 256–261, 2017.
Y. Zhang, G. Cao, B. Wang, and X. Li, “A novel ensemble method for k-nearest neighbor,” Pattern Recognit., vol. 85, pp. 13–25, 2019, doi: 10.1016/j.patcog.2018.08.003.
Z. Wang, Y. Li, D. Li, Z. Zhu, and W. Du, “Entropy and gravitation based dynamic radius nearest neighbor classification for imbalanced problem,” Knowledge-Based Syst., vol. 193, no. xxxx, p. 105474, 2020, doi: 10.1016/j.knosys.2020.105474.
A. E. Woerner et al., “Forensic human identification with targeted microbiome markers using nearest neighbor classification,” Forensic Sci. Int. Genet., vol. 38, pp. 130–139, 2019, doi: 10.1016/j.fsigen.2018.10.003.
M. K. Nasution, R. R. Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Naïve Bayes Dan Algoritma,” e-Proceeding Eng., vol. 8, no. 5, pp. 9765–9772, 2021.
J. Enterprise, Rahasia Manajemen File. Jakarta: PT. Elex Media Komputindo, 2010.
A. Nugroho, Rekayasa Perangkat Lunak Berorientasi Objek denganMetode USDP. Andi, 2010.
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Sahat Roni, Fadlina Fadlina, Siti Nurhabibah Hutagalung
This work is licensed under a Creative Commons Attribution 4.0 International License.
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.