Analisa Kompresi File Teks Dengan Kombinasi Metode Burrows-Wheeler Transform Dan Shannon-Fano

 (*)Boy Alfredo Silaban Mail (Universitas Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Abstract

With the development of computer technology today it can be used for various things, one of which is storing files. The larger the size of the file stored on the computer, the greater the storage space. The greater the storage space required, the greater the costs incurred. In addition, files that have a large size can cause problems when transmitting files. Therefore, methods emerged that aimed to compress files in order to save storage space for these files, one of which was compression. With compression, it is hoped that it can save costs and time spent in order to add file storage media facilities on a computer and speed up the file transfer process. After carrying out the compression process of the Shannon-Fano and BWT algorithms, it can be concluded that the combination of the BWT algorithm and the Shannon-Fano algorithm is more capable of reducing the size capacity in compressed pdf text files, because the compression process using the combination of the BWT algorithm and the Shannon-Fano algorithm is able to reduce the size data from the initial value. The combination of the BWT Algorithm and the Shannon-Fano Algorithm is able to compress pdf text files more efficiently than compression applications from the widely circulated online web.

Keywords


Text File Compression;Combination algorithm, Shanon Fano algorithm;Burrow Wheeler Transform algorithm

Full Text:

PDF


Article Metrics

Abstract view : 367 times
PDF - 262 times

References

Adhitama, G. 2009. Perbandingan Algoritma Huffman Dengan Algoritma Shannon-Fano. Institut Teknologi Bandung.

Tri Rahmah Silviani, Ayu Arfiana, Teknik Kompresi Citra Menggunakan Metode Huffman. program pascasarjana. Universitas Negeri Yogyakarta.2016.

Iwan Fitrianto Rahmad, Helmi Kurniawan, 2011, Kompresi File Citra Bitmap Menggunakan Algoritma RLE dan LZ78. Jurnal CSRID, 3(2):81a- 92.

Alakuijala, H., Kliuchnikov, E., Szabadka, Z., & Vandevenne, L. 2015. Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM and Bzip2 Compression Algorithm.

Alakuijala, J., & Szabadka, Z. 2016. Internet Engineering Task Force (IETF). Tersedia dalam: https://www.ietf.org/rfc/rfc7932.txt. [Diakses tanggal 11 November 2017]

Sapta Aji Sri M, Linda Suvi R, Retno Sundari, meningkatkan rasio kompresi citra digital dengan Huffman coding pada transfer data. Jurnal Teknik Informatika. STMIK PPKIA Pradnya Paramita. Malang. 2014.

Anggriani, M. 2011. Perbandingan Metode Kompresi Huffman dan Dynamic Markov Compression (DMC).

Boedi, D., Rustamaji, H. C., & Nugraha, M. A. 2009. Aplikasi Kompresi SMS Berbasis JAVA ME Dengan Metode Kompresi LZW-Huffman. UPN "Veteran" Yogyakarta,. Dalam Seminar Nasional Informatika.

Darmawan, D. 2014. Pengembangan E-Learning Teori dan Desain.

Salomon, D. 2007. Data Compression The Complete Reference Fourth Edition, hal.2.

Fransisca, C. 2014. Implementasi Algoritma Kompresi Deflate Pada Website Berbasis PHP dan Basis Data Mysql.

Aji, Y. Y., Darwiyanto, E., & Septiana, G. (2016). Analisis Perbandingan Kompresi Dan Dekompresi Data Teks Menggunakan Algoritma Shannon-fano 2 Gram Dan Algoritma Lempel Ziv Welch Pada Terjemahan Hadits Shahih Muslim. eProceedings of Engineering,

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Boy Alfredo Silaban

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.