Algoritma Clustering K-Nearest Neighbor Dalam Pengelompokan Masyarakat Kecamatan Medan Area Berdasarkan Tingkat Ekonomi Keluarga

 (*)Rizky Meliani Astri Hasibuan Mail (Universitas Budi Darma, Medan, Indonesia)
 Efori Bu’ulolo (Universitas Budi Darma, Medan, Indonesia)
 Sumiaty Adelina Hutabarat (Universitas Budi Darma, Medan, Indonesia)

(*) Corresponding Author

Abstract

An economy that is constantly changing and developing may result in increased economic difficulties. Current economic developments have decreased to 4.79, causing poverty in Indonesia to increase. To see the condition of the people's economy, it is necessary to collect detailed data so that people with a lower economy get assistance. The problems faced in this study are data collection and classification of the economic level of the population. The process is not very efficient because it is done manually. Classification procedures will only be carried out when necessary. Controlling the welfare of the population has not been carried out in detail. To overcome these problems, we need a system so that the grouping of people who have a classification from high to low economic level. This study uses the K-NN Clustring Algorithm which requires information training to classify objects that are very close. In the last process the Clustring K-NN algorithm is a method for calculating the ratio of old data to updated information. As well as looking for the highest data occurrence value that will be used as a reference as a result.

Keywords


Data Mining; Grouping; Poverty; K-Nearest Neighbor

Full Text:

PDF


Article Metrics

Abstract view : 490 times
PDF - 335 times

References

M. Tindangen, D. S. M. Engka, and P. C. Wauran, “PERAN PEREMPUAN DALAM MENINGKATKAN EKONOMI KELUARGA (STUDI KASUS: PEREMPUAN PEKERJA SAWAH DI DESA LEMOH BARAT KECAMATAN TOMBARIRI TIMUR KABUPATEN MINAHASA).,” J. Berk. Ilm. Efisiensi, vol. 20, no. 03, 2020.

I. Sofi, “Efektivitas Bantuan Langsung Tunai Dana Desa Dalam Pemulihan Ekonomi Di Desa,” Indones. Treas. Rev. J. Perbendaharaan, Keuang. Negara dan Kebijak. Publik, vol. 6, no. 3, pp. 247–262, 2021.

E. Y. S. Ritno, N. A. Hasibuan, and F. Fadlina, “IMPLEMENTASIALGORITMA CLASIFICATION ANDREGRESSION TREES (CART) DALAM KLASIFIKASI EKONOMI KELUARGA PADA DESADAGANG KELAMBIR TG. MORAWA,” Inf. dan Teknol. Ilm., vol. 6, no. 1, pp. 60–65, 2019.

P. S. Ramadhani, “PROGRAM STUDI EKONOMI ISLAM FAKULTAS EKONOMI DAN BISNIS ISLAM UIN WALISONGO SEMARANG.”

F. Kurnia, J. Kurniawan, and I. Fahmi, “Klasifikasi Keluarga Miskin Menggunakan Metode K-Nearest Neighbor Berbasis Euclidean Distance,” in Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI), 2019, vol. 11, pp. 230– 239.

N. Nurvina, “Peran Perempuan sebagai Penopang Ekonomi Keluarga di Desa Palangka Kecamatan Sinjai Selatan Perspektif Hukum Islam.” Universitas Islam Negeri Alauddin Makassar, 2019.

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.

H. B. Suhartini, “Klasifikasi Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Kelayakan Bantuan Rehabilitasi Rumah Tidak Layak Huni Pada Desa Lenek Duren Kecamatan Aikmel Kabupaten Lombok Timur Suhartini1, Hariman,” vol, vol. 2, pp. 79–85, 2019.

Y. R. Kaesmetan and M. Y. Taek, “Penentuan Penerima Beras Raskin di Kelurahan Oesapa Barat Menggunakan Metode K- Nearest Neighbor (KNN),” J. Teknol. Terpadu, vol. 2, no. 2, 2016.

I. W. Supriana and L. G. Astuti, “Implementasi K-Nearest Neighbor Pada Penentuan Keluarga Miskin Bagi Dinas Sosial Kabupaten Tabanan,” J. Teknol. Inf. dan Komput, vol. 5, no. 1, pp. 120–129, 2019.

F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor,” Ultim. J. Tek. Inform., vol. 7, no. 2, pp. 98–104, 2015.

D. M. Midyanti, R. Hidyati, S. Bahri, and U. T. Pontianak, “Rumah Di Kota Pontianak,” vol. 4, no. 2, pp. 119–124, 2019.

T. He, “A NOVEL EDAS BASED METHOD FOR MULTIPLE,” vol. 26, no. 6, pp. 1125–1138, 2020.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Algoritma Clustering K-Nearest Neighbor Dalam Pengelompokan Masyarakat Kecamatan Medan Area Berdasarkan Tingkat Ekonomi Keluarga

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Rizky Meliani Astri Hasibuan, Efori Bu’ulolo, Sumiaty Adelina Hutabarat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.