Deteksi Berita Palsu Tentang Vaksinasi Covid-19 Dengan Menggunakan Text Mining Dan Algoritma Cosine Similarity

Diana Marta, Guidio Leonarde Ginting, A.M Hatuaon Sihite

Abstract


Indonesia is currently experiencing an outbreak of a global virus called COVID-19. A lot of the fake news currently spreading on social media is news about vaccinations. The truth of spreading fake news should be detected by applying one of the information technologies, namely natural language processing (NLP). The algorithms that will be used to support fake news detection are text mining algorithms and cosine similarity algorithms. Looking for references related to the problem, starting from looking for books that discuss the algorithm used in this research. Looking for data related to the research topic, namely the COVID-19 vaccination. Data processing is done by applying a text mining algorithm as text processing. The stages of text mining are case folding, tokenizing, filtering, stemming. The processing analysis stage is carried out by applying the cosine similarity algorithm to analyze the level of similarity between data. Based on the calculation using the cosine similarity algorithm above, Q (detected news) has a similarity value of above 40% to D31 and D59, where the labels that have been made on D31 and D59 news data are hoax news. The probability of news appearing using a mathematical formula to calculate the probability, the probability value obtained by Q (news detected) is 100% hoax and 0% fact. Based on the results of the analysis of the data by applying the text mining and cosine similarity algorithms, the results show that the identified news is declared a hoax according to the data held.

Keywords


News; Vaccination; Covid-19; TF-IDF; Text Mining; Cosine Similarity

Full Text:

PDF

References


R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,†vol. 9, no. 1, 2017.

muhammad naufal Alfareza, “pembangunan chatboot menggunakan natural language processing di jurusan teknik industri.†pp. 15–19, 2020.

. M. Yulian Findawati, S.T. and M. K. Muhammad Alfan Rosid, S.Kom., BUKU AJAR TEXT MINING, Cetakan pe. UMSIDA Press Anggota IKAPI No. 218/Anggota Luar Biasa/JTI/2019 Anggota APPTI No. 002 018 1 09 2017, 2020.

N. Silalahi and G. L. Ginting, “Analisa Sentimen Masyarakat Dalam Penggunaan Vaksin Sinovac Dengan Menerapkan Algoritma Term Frequence – Inverse Document Frequence ( TF-IDF ) dan Metode Deskripsi,†vol. 3, no. 3, pp. 206–217, 2022, doi: 10.47065/josh.v3i3.1441.

R. Saptono, H. Prasetyo, and A. Irawan, “Combination of Cosine Similarity Method and Conditional Probability for Plagiarism Detection in the Thesis Documents Vector Space Model,†no. July, 2018.

A. SALEH, “ANALISIS ACCURATE LEARNING RADIAL BASIS FUNCTION NEURAL NETWORK MENGGUNAKAN COSINE SIMILARITY PADA PENGENALAN DAUN,†UNIVERSITAS SUMATERA UTARA, 2018.

“PENERAPAN METODE TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) DAN COSINE SIMILARITY PADA SISTEM TEMU KEMBALI INFORMASI U - 8623-27168-2-PB.pdf.†.

A. E. M Syukron Nawawi, Falentino Sembiring, “Implementasi Algoritma K-Means Clusterinf Menggunaka Orange Untuk Penentuan Produk Busana Muslim Terlaris,†pp. 1–9, 2021.

V. Michael Sitorus, “Penerapan Algoritma C4.5 terhadap pengaruh VSTOCK.ID pada masyarakat di masa pandemi covid-19,†J. Inf. Adv. Comput., vol. .2, no.2, pp. 1–5, 2021.

U. S. Rut Samuel, Ripa Natan, Fitria, â€œï€ Penerapan Cosine Similarity dan K-Nearest Neighbor (K-NN) pada Klasifikasi dan Pencarian Buku,†J. big data Anal. artifical Intell., vol. . 1, No. 1, pp. 2–6, 2018.

M. D. R. Wahyudi, “Penerapan Algoritma Cosine Similarity pada Text Mining Terjemah Al-Qur’an berdasarkan keterkaitan topik,†semesta Tek., vol. 1,41-50, pp. 1–10, 2019, doi: 10.18196/st.221235.

D. Kurniadi, S. Farisa, C. Haviana, and A. Novianto, “Implementasi Algoritma Cosine Similarity pada sistem arsip dokumen di Universitas Islam Sultan Agung,†vol. 17, no. 2, pp. 124–132, 2020.

J. Jtik, J. Teknologi, Y. Lasena, and M. Hasan, “Text Mining Analysis untuk Identifikasi Artikel Hoax Menggunakan Algoritma Cosine Similarity,†vol. 4, no. 2, pp. 0–5, 2020.




DOI: https://doi.org/10.30865/komik.v6i1.5738

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Diana Marta, Guidio Leonarde Ginting, A.M Hatuaon Sihite

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.