Analisis Metode Klastering Pada Kasus Penyebab Perceraian Berdasarkan Provinsi Dengan Teknik K-Means
DOI:
https://doi.org/10.30865/komik.v4i1.2699Abstract
Abstract−Divorce is no longer a strange thing in Indonesia, but divorce can be said to be a common and popular thing. It was noted that in 2017 the divorce rate reached 18.8% of the 1.9 million events. From this case, a study was conducted to obtain a grouping in the regions in Indonesia that had the most cases of divorce. There are 4 variables used, namely continual disputes and quarrels, economic problems, leaving one party, and domestic violence. This research uses the Clustering method and is tested with the help of RapidMiner software to ensure the accuracy of the method used. Clustering results show the cause of divorce from 29 data in Indonesia, the highest cluster of 3 regions and the lowest cluster of 26 regions. From this research it is expected that the results obtained can be information for the government in handling divorce cases in Indonesia so that appropriate programs can be drawn up for each province to reduce divorce rates in Indonesia.
Keywords: Datamining, Clustering, K-Means, Perceraian, Wilayah
References
A. P. Windarto, S. Tinggi, I. Komputer, and T. Bangsa, “Implementation of Data Mining on Rice Imports by Major Country of Origin Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,†no. November, 2017.
J. O. Ong, “Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,†no. April, pp. 10-20. 2013.
D. R. Sari, A. P. Windarto, D. Hartama, and S. Solikhun, “Sistem Pendukung Keputusan untuk Rekomendasi Kelulusan Sidang Skripsi Menggunakan Metode AHP-TOPSIS,†J. Teknol. dan Sist. Komput., vol. 6, no. 1, p. 1, 2018.
L. K. Simanjuntak, M. Mesran, T. Y. M. Sihite, N. Kurniasih, and Y. Yuhandri, “Sistem Pendukung Keputusan SNMPTN Jalur Undangan Dengan Metode Electre,†Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. July, p. 14, 2018.
M. Turnip, “Sistem Pakar Diagnosa Penyakit THT Menggunakan Metode Backward Chaining,†no. January 2015, 2017.
A. P. Windarto, M. R. Lubis, and L. R. Komprehensif, “Implementasi Jst Pada Prediksi Total Laba Rugi Komprehensif Implementation Of Neural Network In Predicting Total Comprehensive Income Of Conventional Commercial Banks Using,†vol. 5, no. 4, pp. 411–418, 2018.
S. Solikhun, A. Revi, S. Ramadan, and R. Novita Sari, “Model Jaringan Syaraf Tiruan Dalam Memprediksi Pendapatan Perkapita Masyarakat Perkotaan Pada Garis Kemiskinan Berdasarkan Propinsi,†Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 2, p. 122, 2018.
T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,†no. 1, pp. 116–132, 1985.
L. Maulida, “Penerapan Data Mining Dalam Mengelompokan Kunjungan Wisatawan Ke Objek Wisata Unggulan Di Prov. DKI Jakarta Dengan K-Means,†JISKa, vol. 2, no. 3, pp. 167–174, 2018.
A. P. Windarto, P. Studi, S. Informasi, and D. Mining, “Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering,†vol. 16, no. 4, pp. 348–357, 2017.
F. L. Sibuea, A. Sapta, S. Informasi, and S. Royal, “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering,†vol. IV, no. 1, 2017.

