Analisa Klasifikasi C4.5 Terhadap Faktor Penyebab Menurunnya Prestasi Belajar Mahasiswa Pada Masa Pandemi
Abstract
The purpose of the study was to classify the factors causing the decline in student achievement during the pandemic using the C4.5 datamining method. Sources of research data were obtained by conducting interviews and distributing questionnaires to 7th semester students of the 2020-2021 school year information system study program. Attributes that used in the classification of the factors causing the decline in student achievement include: Learning Method (C1), Study Time (C2), Material Understanding (C3), Giving Assignments (C4) and Environment (C5). The results of the calculation show that the Material Understanding (C3) attribute is the attribute that most influences the decline in student learning achievement. Testing was also carried out using the help of Rapidminer software and obtained an accuracy of 97.5%.
Keywords: Classification, Datamining, C4.5, learning achievement, Pandemic
Full Text:
PDFArticle Metrics
Abstract view : 412 timesPDF - 174 times
References
F. Suasty and A. A. Hadi, “Penggunan Media Pembelajaran Video untuk Solusi Penurunan Pemahaman Materi Pembelajaran Ketika Belajar Online Akibat Pandemic Covid-19,” vol. 1, no. 1, pp. 12–16, 2020.
B. Nadeak, C. P. Juwita, and E. Sormin, “Hubungan kemampuan berpikir kritis mahasiswa dengan penggunaan media sosial terhadap capaian pembelajaran pada masa pandemi Covid-19,” vol. 8, no. 2, pp. 98–104, 2020.
A. Cahyani et al., “Motivasi Belajar Siswa SMA pada Pembelajaran Daring di Masa Pandemi Covid-19,” vol. 3, no. 1, pp. 123–140, 2020.
M. Belajar, S. Pada, M. Pandemi, C. Di, and K. V. S. D. N. Ngembel, “THE EFFECTIVENESS OF BION ( BINTANG ONLINE ) IN IMPROVING THE LEARNING MOTIVATION OF 5 TH GRADE STUDENTS IN STATE ELEMENTARY SCHOOL 1 OF NGEMBEL,” vol. 6, pp. 184–198, 2020.
K. F. Irnanda and A. P. Windarto, “Penerapan Klasifikasi C4 . 5 Dalam Meningkatkan Kecakapan Berbahasa Inggris dalam Masyarakat,” pp. 304–308, 2020.
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” vol. 7, no. 1, pp. 59–64, 2013.
C. Algoritma, “DATA MINING UNTUK MEMPREDIKSI JENIS TRANSAKSI NASABAH PADA KOPERASI SIMPAN PINJAM DENGAN,” vol. 1, no. 2, pp. 32–37, 2017.
T. Hewan, P. Siantar, and D. Algoritma, “ANALISA KLASIFIKASI DATA MINING PADA TINGKAT KEPUASAN PENGUNJUNG,” vol. 3, pp. 588–592, 2019.
P. Kinerja et al., “PERBANDINGAN KINERJA,” no. February, 2016.
B. R. C. T. I et al., “Implemetasi k-means clustering pada rapidminer untuk analisis daerah rawan kecelakaan,” no. April, pp. 58–62, 2017.
A. P. Windarto, P. Studi, S. Informasi, and D. Mining, “Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering,” vol. 16, no. 4, pp. 348–357, 2017.
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)
P3M STMIK Budi Darma
Sekretariat Jln. Sisingamangaraja No. 338 Telp 061-7875998
email: komik@univ-bd.ac.id, komik.budidarma@gmail.com
This work is licensed under a Creative Commons Attribution 4.0 International License.