Penerapan Metode Selft Organizing Maps (SOM) Dalam Rekomendasi Jurusan Calon Mahasiswa Baru (Studi Kasus : Universitas Imelda Medan)

Authors

  • Harika Fitri Sinurat Universitas Budi Darma, Medan
  • Surya Darma Nasution Universitas Budi Darma, Medan
  • Alwin Fau Universitas Budi Darma, Medan

DOI:

https://doi.org/10.30865/komik.v4i1.2675

Abstract

Admission of new students is an administrative process for prospective students in educational institutions. This process is usually carried out every year. Imelda University Medan is one of the universities that still uses manual system procedures in selecting the right majors for prospective new students. This study aims to design a data mining system application for recommendations for new student majors at Imelda University Medan, using the Selft Organizing Maps (SOM) method to make it easier for prospective new students in the process of selecting the right department. For application design, the Visual Basic 2008 programming language is used, this system is made flexible so that if at any time the criteria used can be adjusted according to needs. The results of this study indicate that the SOM method can produce recommendations for the right majors for prospective students at the University of Imelda Medan. . Thus the system is expected to be able to assist in the activities of department recommendations for prospective new students at the University of Imelda Medan.

Keywords: New Students, Data mining, Selft Organizing Maps (SOM)

Author Biographies

Harika Fitri Sinurat, Universitas Budi Darma, Medan

Program Studi Teknik Informatika

Surya Darma Nasution, Universitas Budi Darma, Medan

Program Studi Teknik Informatika

Alwin Fau, Universitas Budi Darma, Medan

Program Studi Teknik Informatika

References

F. Nasari and S. Darma, “Seminar Nasional Teknologi Informasi dan Multimedia 2015 PENERAPAN K-MEANS CLUSTERING PADA DATA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS POTENSI UTAMA),†pp. 6–8, 2015.

R. Umar, A. Fadlil, and R. R. Az-Zahra, “Self Organizing Maps(SOM) untuk Pengelompokkan Jurusan di SMK,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 2, p. 131, Dec. 2018, doi: 10.23917/khif.v4i2.7044.

fauzie situmorang, syafrizal Helmi, muda Iskandar, Dalimunthe, Dolly M.ja’far, fadli, syarief, analisis data. medan: @ USU Press 2010, 2010.

H. Toba and M. Fransisca, “Perancangan dan Pembuatan Sistem Pakar Berbasis Runut Maju untuk Diagnosa Awal Perkembangan Emosi pada Anak,†J. Inform., vol. 5, no. 1, pp. 1–13, 2012.

M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Creat. Inf. Technol. J., vol. 4, no. 2, p. 151, 2018, doi: 10.24076/citec.2017v4i2.106.

D. P. Utomo, P. Sirait, and R. Yunis, “Reduksi Atribut Pada Dataset Penyakit Jantung dan Klasifikasi Menggunakan Algoritma C5. 0,†J. MEDIA Inform. BUDIDARMA, vol. 4, no. 4, pp. 994–1006, 2020.

B. S. Pranata and D. P. Utomo, “Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service),†Bull. Inf. Technol., vol. 1, no. 2, pp. 83–91, 2020.

D. P. Utomo and Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,†J. MEDIA Inform. BUDIDARMA, vol. 4, no. 2, pp. 437–444, 2020.

R. Amelia and D. P. Utomo, “ANALISA POLA PEMESANAN PRODUK MODERN TRADE INDEPENDENT DENGAN MENEREPAKAN ALGORITMA FP. GROWTH (STUDI KASUS: PT. ADAM DANI LESTARI),†KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 416–423, 2019.

D. P. Utomo and B. Purba, “Penerapan Datamining pada Data Gempa Bumi Terhadap Potensi Tsunami di Indonesia,†Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. 1, pp. 846–853, 2019.

Downloads

Published

2020-11-21