ANALISIS METODE K-MEANS PADA PENGELOMPOKAN PERGURUAN TINGGI MENURUT PROVINSI BERDASARKAN FASILITAS YANG DIMILIKI DESA
DOI:
https://doi.org/10.30865/komik.v3i1.1677Abstract
Higher education is an education level that includes diplomat, undergraduate and doctoral programs. The purpose of higher education is to improve the quality of the workforce, to help improve the quality of the workforce each university must have the facilities needed in teaching and learning activities. This study discusses the Analysis of the K-Means Method in the Grouping of Universities by Province Based on the Facilities of the Village. Sources of data obtained from data collected based on documents from 2003 to 2018 through the website of the Indonesian Statistics Agency. Data is processed into 2 clusters, namely the highest facility level cluster (C1) and the lowest facility level cluster (C2). So that obtained from 34 provinces 3 provinces are grouped in high facility level clusters (C1) and 31 provinces are grouped in low facility level clusters (C2). This can be input to the government for provinces that have higher education institutions that still have inadequate facilities in each village and are of more concern to the government based on the cluster that is being conducted.
Keywords: K-Means, Higher education, Grouping, FacilitiesReferences
K. Fanny Irnanda, “Penerapan K-Means pada Proporsi Individu dengan Keterampilan (Teknologi Informasi dan Komunikasi) TIK Menurut Wilayah,†Semin. Nas. Sains Teknol. Inf., pp. 452– 456, Jul. 2019.
S. M. Dewi and A. P. Windarto, “Analisis Metode Electre Pada Pemilihan Usaha Kecil Home Industry Yang Tepat Bagi Mahasiswa,†Sist. J. Sist. Inf., vol. 8, no. 3, pp. 377–385, 2019.
D. R. S. P, A. A. Muin, and M. Amin, “PEMILIHAN FACIAL WASH UNTUK KULIT WAJAH BERMINYAK DENGAN METODE PROMETHEE II,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 222–229, 2019.
C. Astria, A. P. Windarto, and Z. Musiafa, “PEMILIHAN PRODUK SAMPO SESUAI JENIS KULIT KEPALA DENGAN METODE PROMETHEE II,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 178–185, 2019.
D. N. Batubara, A. P. Windarto, and M. R. Raharjo, “PENERAPAN PROMETHEE II PADA PEMILIHAN PRODUK CONDITIONER SEBAGAI UPAYA PENINGKATAN MINAT BELI KONSUMEN,†CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 191–197, 2019.
D. N. Batubara, D. R. S. P, and A. P. Windarto, “Penerapan Metode PROMETHEE II Pada Pemilihan Situs Travel Berdasarkan Konsumen,†J. SISFOKOM, vol. 8, no. 1, pp. 46–52, 2019.
A. P. Windarto, “Penerapan Datamining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering Method,†Techno.Com, vol. 16, no. 4, pp. 348–357, 2017.
M. G. Sadewo et al., “PENERAPAN ALGORITMA CLUSTERING DALAM MENGELOMPOKKAN BANYAKNYA DESA / KELURAHAN MENURUT UPAYA ANTISIPASI / MITIGASI BENCANA ALAM MENURUT PROVINSI DENGAN K-MEANS,†vol. 2, pp. 311–319, 2018.
H. Siahaan, H. Mawengkang, S. Efendi, A. Wanto, and A. P. Windarto, “Application of Classification Method C4 . 5 on Selection of Exemplary Teachers,†in IOP Conference Series, 2018, pp. 1–6.
Sudirman, A. P. Windarto, and A. Wanto, “Data mining tools | rapidminer: K-means method on clustering of rice crops by province as efforts to stabilize food crops in Indonesia,†IOP Conf. Ser. Mater. Sci. Eng., vol. 420, p. 12089, 2018.
S. Azhar, H. Latipa, S. Leni, and N. Zulita, “Sistem Pakar Penyakit Ginjal Pada Manusia Menggunakan Metode Forward Chaining,†J. Media Infotama, vol. 10, no. 1, pp. 16–26, 2014.
T. Budiharjo, Soemartono, T., Windarto, A.P., Herawan, “Predicting tuition fee payment problem using backpropagation neural network model,†Int. J. Adv. Sci. Technol., 2018.
T. Budiharjo, Soemartono, T., Windarto, A.P., Herawan, “Predicting school participation in indonesia using back-propagation algorithm model,†Int. J. Control Autom., 2018.
A. P. Windarto, M. R. Lubis, and Solikhun, “MODEL ARSITEKTUR NEURAL NETWORK DENGAN BACKPROPOGATION PADA PREDIKSI TOTAL LABA RUGI KOMPREHENSIF BANK UMUM KONVENSIONAL,†Kumpul. J. Ilmu Komput., vol. 5, no. 2, pp. 147–158, 2018.
A. P. Windarto, M. R. Lubis, and Solikhun, “IMPLEMENTASI JST PADA PREDIKSI TOTAL LABA RUGI KOMPREHENSIF BANK UMUM KONVENSIONAL DENGAN BACKPROPAGATION,†J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, pp. 411–418, 2018.
Sumijan, A. P. Windarto, A. Muhammad, and Budiharjo, “Implementation of Neural Networks in Predicting the Understanding Level of Students Subject,†Int. J. Softw. Eng. Its Appl., vol. 10, no. 10, pp. 189–204, 2016.
C. Astria, “Metode K-Means Pada Pengelompokan Wilayah Pendistribusian Listrik,†Semin. Nas. Sains Teknol. Inf., pp. 306 – 312, Jul. 2019.
B. Melpa Metisen, “ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA,†J. Media Infotama, vol. 11, no. 2, pp. 110–118, Sep. 2015.
L. Maulida, “PENERAPAN DATAMINING DALAM MENGELOMPOKKAN KUNJUNGAN WISATAWAN KE OBJEK WISATA UNGGULAN DI PROV. DKI JAKARTA DENGAN K-MEANS,†JISKa (Jurnal Inform. Sunan Kalijaga), vol. 2, no. 3, pp. 167–174, Jan. 2018.
A. P. Windarto, “Penerapan Data Mining Pada Ekspor Buah-Buahan Menurut Negara Tujuan Menggunakan K-Means Clustering,†Techno.COM, vol. 16, no. 4, pp. 348–357, 2017.
M. Anjelita, “Analisis Metode K-Means pada Kasus Ekspor Barang Perhiasan dan Barang Berharga Berdasarkan Negara Tujuan,†Semin. Nas. Sains Teknol. Inf., pp. 476 – 482, Jul. 2019.
D. Nabila Batubara, “Analisis Metode K-MEANS Pada Pengelompokan Keberadaan Area Resapan Air Menurut Provinsi,†Semin. Nas. Sains Teknol. Inf., pp. 345 – 349, Jul. 2019.
S. Maulina Dewi, “Analisa Metode K-Means pada Pengelompokan Kriminalitas Menurut Wilayah,†Semin. Nas. Sains Teknol. Inf., pp. 620 – 625, Jul. 2019.

