Prediksi Kebangkrutan Menggunakan Artificial Neural Network

Authors

  • Prana Yoga STMIK Nusa Mandiri Jakarta dan Akademi Bina Sarana Informatika Jakarta
  • Raden Bagus Dimas Putra STMIK Nusa Mandiri Jakarta dan Akademi Bina Sarana Informatika Jakarta
  • Eko Setia Budi STMIK Nusa Mandiri Jakarta dan Akademi Bina Sarana Informatika Jakarta

DOI:

https://doi.org/10.30865/jurikom.v5i5.986

Abstract

Research for this bankruptcy prediction has been intensified since the 1960s (Altman, 1968). Bankruptcy prediction can be formulated as a classification model. This classification models approach involving statistical methods and machine learning methods. famous reliable method is a method of Artificial Neural Network (ANN). However, in the development of classification models using this ANN there are POINTS must be handled carefully. As the parametric model, ANN's performance depends on several parameters. Perceptron ANN able to handle data features are redundant because the weights are identical will be learned during the training process. Weight to the redundant features that will be pressed so that it becomes very small. The training process for the formation of a model takes a long time. This is because the Perceptron ANN must perform a number of iterations to perform the update in order to predict the relative weight properly on all training data

Author Biography

Prana Yoga, STMIK Nusa Mandiri Jakarta dan Akademi Bina Sarana Informatika Jakarta

STMIK Nusa Mandiri Jakarta

References

Adnan, M. A dan M. Taufik. (2001). Analisis ketepatan prediksi metode Altman terhadap terjadinya likuidasi pada lembaga perbankan. Jurnal Ekonomi dan Auditing Vol 5, No. 2, Desember. Yogyakarta: Fakultas Ekonomi Universitas Islam Indonesia. Yogyakarta

A.Y.N. Yip. (2004). Predicting business failure with a case-based reasoning approach. Proceedings of 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems: KES, Wellington, New Zealand. September 3215/2004, Part III, , pp. 20–25

C.F. Tsai. (2008). Financial decision support using neural networks and support vector machines. Expert Systems 25 (4): 380–393.

E.I. Altaian. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23, 4: 589–609.

E.I. Altman. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23: 89–609.

G. Zhang. (1999). Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research 116 (1): 16–32.

J.A. Ohlson. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 109–131.

J.H. Min, Y.C. Lee. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 28 (4): 603–614.

Kahya E. dan P. Theodossiou. (1999). Predicting corporate financial distress: A Time-Series CUSUM Methodology. Review of Quantitative Finance and Accounting, 13,4; ABI/INFORM Global pg.323.

K.S. Shin, T.S. Lee, H.J. Kim. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28 (1): 127–135.

L. Fengyi, Y. Ching-Chiang, L. Meng-Yuan. (2011) The use of hybrid manifold learning and support vector machines in the prediction of business failure. Knowledge-Based Systems 24 (1): 95–101.

Luciana, S. A. (2006). Prediksi kondisi financial distress perusahaan go public dengan menggunakan analisis multinomial logit, Jurnal Ekonomi dan Bisnis. Vol. XII No. 1, Maret 2006. ISSN: 0854 – 9087

P. Ravisankar, V. Ravi. (2010). Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP. Knowledge-Based Systems 23 (8) : 823–831.

R.L. Wilson, R. Sharda. (1994). Bankruptcy prediction using neural networks. Decision Support Systems 11 545–557

R.C. West. (1985). A factor-analytic approach to bank condition. Journal of Banking & Finance 9 (2): 253–266.

Santoso, Budi. (2007). Data Mining: Teknik Pemanfaatan Data untuk Keperluan Bisnis. Graha Ilmu, Yogyakarta

W.H. Beaver. (1966). Financial ratios as predictors of failure. Journal of Accounting Research 4:71–111.

Y. Freund and R. E. Schapire. (1999). Large margin classification using the perceptron algorithm. Machine Learning, 37:277-296

Additional Files

Published

2018-10-27

How to Cite

Yoga, P., Putra, R. B. D., & Budi, E. S. (2018). Prediksi Kebangkrutan Menggunakan Artificial Neural Network. JURNAL RISET KOMPUTER (JURIKOM), 5(5), 503–510. https://doi.org/10.30865/jurikom.v5i5.986