Analisis Sentimen Masyarakat Indonesia terhadap Keterlibatan Bill Gates dalam Program Vaksin TBC di Media Sosial X Menggunakan SVM

Authors

  • Fakhita Fahraini Universitas Islam Negeri Sumatera Utara, Medan
  • Sriani Sriani Universitas Islam Negeri Sumatera Utara, Medan

DOI:

https://doi.org/10.30865/jurikom.v13i1.9431

Keywords:

Sentiment Analysis, TB Vaccine, Bill Gates, Support Vector Machine, TF-IDF

Abstract

The involvement of Bill Gates in the development program of the tuberculosis (TB) vaccine has generated diverse responses among the Indonesian public, particularly as expressed through social media platform X, making it an important issue to examine since public sentiment may influence public trust in health programs and the success of TB prevention efforts. This study aims to analyze public sentiment in Indonesia toward Bill Gates’ involvement in the TB vaccine program based on social media data from platform X using the Support Vector Machine (SVM) algorithm. The research data consist of 784 Indonesian-language tweets collected through web scraping techniques using keywords related to the TB vaccine issue and Bill Gates. The collected data then underwent several text preprocessing stages, including data cleaning, case folding, tokenization, word normalization, stopword removal, and stemming to improve text quality and consistency. Feature representation was performed using the Term Frequency–Inverse Document Frequency (TF-IDF) method, while the dataset was split into 80% training data and 20% testing data. The classification model was built using an SVM algorithm with a linear kernel to optimally separate positive and negative sentiment classes. The experimental results show that the SVM model combined with TF-IDF achieved an accuracy of 96.8%, with a precision of 98.3%, a recall of 79.2%, and an F1-score of 86.0%. Sentiment distribution analysis indicates that the majority of tweets were dominated by negative sentiment, while positive sentiment appeared in a smaller proportion. The main contribution of this study lies in the application of social media–based sentiment analysis specifically to the TB vaccine issue associated with a global public figure in the Indonesian context, as well as in demonstrating that the combination of SVM and TF-IDF is effective in accurately classifying public opinion. These findings are expected to serve as a data-driven reference for government institutions and public health stakeholders in designing more effective public communication strategies.

References

2024.

[2] A. Handayani and I. Zufria, “Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 53–63, 2023, doi: 10.47065/josh.v5i1.4379.

[3] M. Furqan, M. Ikhsan, and R. Aini, “Algoritma Support Vector Machine Untuk Analisis Sentimen Masyarakat Indonesia Terhadap Pandemi Virus Corona Di Media Sosial,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 4, pp. 908–915, 2023, [Online]. Available: https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/241%0Afiles/5265/Furqan

[4] D. Sartika, A. Harokan, and L. Suryani, “Analysis of risk factors for the incidence of pulmonary tuberculosis in Tebing Tinggi Community Health Center: A cross-sectional study,” vol. 6, no. 3, pp. 427–435, 2025.

[5] M. Riziq sirfatullah Alfarizi, M. Zidan Al-farish, M. Taufiqurrahman, G. Ardiansah, and M. Elgar, “PENGGUNAAN PYTHON SEBAGAI BAHASA PEMROGRAMAN UNTUK MACHINE LEARNING DAN DEEP LEARNING,” 2023.

[6] H. P. Doloksaribu and Y. T. Samuel, “KOMPARASI ALGORITMA DATA MINING UNTUK ANALISIS SENTIMEN APLIKASI PEDULILINDUNGI,” vol. 16, no. 1, pp. 1–11, 2022.

[7] F. A. Nur, “Analisa Sentimen Twitter Vaksin Covid-19 di Indonesia dengan Metode Support Vector Machine,” vol. 5, no. 3, pp. 1244–1252, 2024.

[8] D. Saputra et al., “Jurnal Wicara Desa , Volume 3 Nomor 3 , Juni 2025 TANJUNG SOCIALIZATION OF TUBERCULOSIS DISEASE PREVENTION TO INCREASE COMMUNITY AWARENESS IN REDUCING TUBERCULOSIS CASES IN TANJUNG VILLAGE 1 Program Studi Matematika , Universitas Mataram , 2 Program Studi Teknik Elektro , Universitas Mataram , 3 Program Studi Arsitektur , Universitas Mataram , 4 Program Pendidikan Bahasa dan Sastra Indonesia , 5 * Program Studi Kehutanan , Universitas Mataram Jurnal Wicara Desa , Volume 3 Nomor 3 , Juni 2025,” vol. 3, pp. 580–594, 2025.

[9] D. A. Punkastyo, F. Septian, and A. Syaripudin, “Implementasi Data Mining Menggunakan Algoritma Naïve Bayes Untuk Prediksi Kelulusan Siswa,” vol. 5, no. 1, pp. 24–35, 2024.

[10] A. H. Lubis, L. Putri, and A. Lubis, “Sentiment analysis on twitter about the death penalty using the support vector machine method,” vol. 11, no. 2, pp. 312–321, 2024, doi: 10.37373/tekno.v11i2.1096.

[11] R. G. Muhamad Luthfi Bangun Permadi, “PENERAPAN ALGORITMA CNN (CONVOLUTIONAL NEURAL NETWORK) UNTUK DETEKSI DAN KLASIFIKASI TARGET MILITER BERDASARKAN CITRA SATELIT,” vol. 4, no. 2, pp. 134–143, 2024.

[12] R. Merdiansah and A. A. Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” vol. 7, pp. 221–228, 2024.

[13] N. Wahyudi, R. Albar, and Y. Rizki, “ANALISIS EFEKTIVITAS METODE SUPPORT VECTOR MACHINE ( SVM ) DALAM MENGURANGI BERITA HOAX BENCANA ALAM DARI DATA TWITTER ANALYSIS OF THE EFFECTIVENESS OF THE SUPPORT VECTOR MACHINE ( SVM ) METHOD IN REDUCING HOAX NEWS ON NATURAL,” vol. 10, no. 1, 2024.

[14] A. Aufa, A. Putri, S. A. Rahmah, T. Informasi, F. Teknik, and U. Dharmawangsa, “IMPLEMENTASI DATA MINING DENGAN ALGORITMA K-MEANS CLUSTERING UNTUK ANALISIS BISNIS PADA PERUSAHAAN ASURANSI,” vol. 5, no. 1, pp. 139–152, 2024, doi: 10.46576/djtechno.

[15] F. Herlando, A. R. Dzikrillah, F. Nufairi, E. Sinduningrum, and M. Sholeh, “ANALISIS PERBANDINGAN SENTIMENT DAN PERBINCANGAN NETIZEN TERHADAP TWITTER PASCA PERGANTIAN NAMA,” vol. 9, no. 1, pp. 360–367, 2024.

[16] R. Ramlan, N. Satyahadewi, and W. Andani, “Analisis Sentimen Pengguna Twitter Menggunakan Support Vector Machine Pada Kasus Kenaikan Harga,” vol. 5, no. 2, pp. 431–445, 2023.

[17] A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM,” vol. 7, no. 1, pp. 11–18, 2026.

[18] F. Abdusyukur, “Penerapan Algoritma Support Vector Machine (Svm) Untuk Klasifikasi Pencemaran Nama Baik Di Media Sosial Twitter,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 73–82, 2023, doi: 10.34010/komputa.v12i1.9418.

[19] O. I. Gifari, M. Adha, I. R. Hendrawan, F. Freddy, S. Durrand, and A. S. Literature, “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” vol. 2, no. 1, pp. 36–40, 2022.

[20] T. A. M and Q. N. Azizah, “Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine,” vol. 4, no. 1, pp. 45–50, 2022.

[21] A. M. T. I. S. Ua et al., “Penggunaan Bahasa Pemrograman Python Dalam Analisis Faktor Penyebab Kanker Paru-Paru,” vol. 2, no. 2, 2023.

[22] M. A. Palomino, “applied sciences Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,” 2022.

[23] Y. Sergio, V. Putranta, B. Rahayudi, and W. Purnomo, “Analisis Sentimen Masyarakat terhadap Kebijakan Penghapusan Subsidi BBM pada Media Sosial Twitter menggunakan Algoritma Naive Bayes Classifier dengan Ekstraksi Fitur N-Gram TF-IDF,” vol. 7, no. 3, pp. 1501–1510, 2023.

[24] A. A. Munandar, F. Farikhin, and C. E. Widodo, “Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 8, no. 2, p. 77, 2023, doi: 10.31328/jointecs.v8i2.4747.

[25] J. Emarapenta, B. Sinulingga, H. Cesar, and K. Sitorus, “Analisis Sentimen Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF Sentiment Analysis of Public towards Indonesian Horror Films Using SVM and TF- IDF Methods,” vol. 14, no. April, pp. 42–53, 2024.

[26] N. A. Maulana and D. Darwis, “Perbandingan Metode SVM dan Naïve Bayes untuk Analisis Sentimen pada Twitter tentang Obesitas di Kalangan Gen Z Sistem Informasi , Fakultas Teknik dan Ilmu Komputer , Universitas Teknokrat Indonesia , Indonesia Comparison of SVM and Naive Bayes Methods for Sentiment Analysis on Twitter About Obesity Among Gen Z,” vol. 5, no. 3, pp. 655–666, 2025.

[27] S. Anadas et al., “Analisis Sentimen Publik Terhadap Program Lapor Mas Wapres Periode 2024 di Media Sosial X Menggunakan Metode Naive Bayes dan Support Vector Machine ( SVM ) Public Sentiment Analysis of the Vice President ’ s Lapor Mas Program for the 2024 Period on Social Media X Using the Naive Bayes Method and Support Vector Machine ( SVM ),” vol. 5, no. 8, pp. 2183–2192, 2025.

[28] J. Sains, F. A. Ryandi, D. Pratiwi, S. Sari, and J. Sains, “Analisis Sentimen Masyarakat Di Media Sosial X Terhadap Kemenkes Dengan Naive Bayes dan SVM,” vol. 7, no. 1, pp. 1–6, 2025.

[29] T. Widyanto, I. Ristiana, and A. Wibowo, “Komparasi Naïve Bayes dan SVM Analisis Sentimen RUU Kesehatan di Twitter,” vol. 6, no. 3, pp. 147–161, 2023.

[30] A. Nurkholis, S. Alim, H. Saputra, and A. Ferriyan, “Sentiment Analysis of COVID-19 Booster Vaccines on Twitter Using Multi-Class Support Vector Machine,” vol. 8, no. 1, pp. 29–36, 2025, doi: 10.15408/aism.v8i1.42911.

Additional Files

Published

2026-02-19

How to Cite

Fahraini, F., & Sriani, S. (2026). Analisis Sentimen Masyarakat Indonesia terhadap Keterlibatan Bill Gates dalam Program Vaksin TBC di Media Sosial X Menggunakan SVM . JURNAL RISET KOMPUTER (JURIKOM), 13(1), 29–47. https://doi.org/10.30865/jurikom.v13i1.9431