Penerapan BERT dalam Memetakan Opini Pengguna Instagram Terhadap Program Makan Bergizi Gratis
DOI:
https://doi.org/10.30865/jurikom.v13i1.9397Keywords:
Makan Siang Gratis, BERT, Anslisis Sentimen, InstagramAbstract
The Free Lunch Program is a new government initiative designed to improve students’ nutritional intake and enhance their focus during school activities. Its implementation has gained significant public attention, generating a variety of reactions across social media platforms, particularly Instagram. This study aims to examine public sentiment toward the program’s rollout in South Sumatra by collecting user comments from posts using the hashtag #mbgsumsel. The collected comments were processed through several stages, including data cleaning, text pre-processing, dataset partitioning, fine-tuning and model evaluation. The BERT model was employed due to its strong capability in capturing contextual meaning within text, making it more effective than conventional classification approaches. Experimental results indicate that the model achieved an akurasi of 88% in classifying sentiments. The test dataset consisted of 751 positive comments, 233 neutral comments, and 257 negative comments. Overall, this study provides a quantitative overview of how the public perceives the Free Lunch Program based on their social media expressions.
References
[1] Y. Zaen Vebrian, “A Sentiment Analysis Of Free Meal Plans On Social Media Using Naïve Bayes Algorithms Analisis Sentimen Terhadap Rencana Makan Gratis Di Sosial Media X Menggunakan Algoritma Naive Bayes,” JURNAL INOVTEK POLBENG - SERI INFORMATIKA, vol. 10, no. 1, 2025.
[2] B. Rahmatullah, S. A. Saputra, P. Budiono, and D. P. Wigandi, “Sentimen Analisis Makan Bergizi Gratis Menggunakan Algoritma Naive Bayes,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 05, no. 01, 2025.
[3] A. Merlinda and Y. Yusuf, “Analisis Program Makan Gratis Prabowo Subianto Terhadap Strategi Peningkatan Motivasi Belajar Siswa di Sekolah Tinjauan dari Perspektif Sosiologi Pendidikan,” vol. 7, 2025.
[4] S. Fatimah, A. Rasyid, Anirwan, Qamal, and H. O. Arwakon, “Kebijakan Makan Bergizi Gratis di Indonesia Timur: Tantangan, Implementasi, dan Solusi untuk Ketahanan Pangan,” vol. 4, no. 1, pp. 14–21, 2024.
[5] R. A. Yahya, “Dana MBG dari Mana? Simak Penjelasan dan Sumbernya,” Tirto.id.
[6] A. Amelia and R. Yusuf, “Analisis Sentimen Masyarakat Indonesia Pada Platform X Terhadap Isu Fufufafa Menggunakan Bidirectional Encoder Representations From Transformers,” 2025.
[7] J. Ouyang, Z. Yang, S. Liang, B. Wang, Y. Wang, and X. Li, “Aspect-Based Sentiment Analysis with Explicit Sentiment Augmentations,” 2024. [Online]. Available: www.aaai.org
[8] A. Moreno-Ortiz, “Making Sense of Large Social Media Corpora Keywords, Topics, Sentiment, and Hashtags in the Coronavirus Twitter Corpus,” 2024. doi: https://doi.org/10.1007/978-3-031-52719-7.
[9] A. K. Ibrahim, M. Mustikasari, and I. Bastian, “Analisis Sentimen Pada Ulasan Aplikasi Astro - Groceries in Minutes di Google Play Store Menggunakan Metode Bidirectional Encoder Representation From Transformers (BERT),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, Jan. 2025, doi: 10.23960/jitet.v13i1.6033.
[10] V. Chandradev, I. M. A. D. Suarjaya, and I. P. A. Bayupati, “Analisis Sentimen Review Hotel Menggunakan Metode Deep Learning BERT,” Bali, 2023.
[11] Z. Liu and Y. Lin Maosong Sun Editors, “Representation Learning for Natural Language Processing Second Edition,” 2023. doi: https://doi.org/10.1007/978-981-99-1600-9.
[12] M. Faruqziddan, E. Daniati, and M. N. Muzaki, “Pendekatan BERT Dalam Analisis Sentimen Terhadap Kominfo Di Media Sosial X,” IJCSR: The Indonesian Journal of Computer Science Research, vol. 4, Jul. 2025.
[13] A. Farhan, Istiadi, and A. Y. Rahman, “Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital di Google Play Store Dengan BERT,” Jun. 2025.
[14] R. M. R. W. P. K. Atmaja and W. Yustanti, “Analisis Sentimen Customer Review Aplikasi Ruang Guru dengan Metode BERT (Bidirectional Encoder Representations from Transformers),” JEISBI, vol. 02, p. 2021, 2021.
[15] A. Aljabar and B. M. Karomah, “Mengungkap Opini Publik: Pendekatan BERT-based-caused untuk Analisis Sentimen pada Komentar Film,” 2024.
[16] M. F. Faturrian, J. H. Jaman, and I. Maulana, “Analisis Sentimen Terhadap Game Palworld di Steam Menggunakan Algoritma Bidirectional Encoder Representation From Transformers,” 2025.



