Analisis Performa Algoritma Naïve Bayes dan SVM Menggunakan Python Pada Ulasan Sentimen Game Roblox

Authors

  • Dia Komalla Universitas Muhammadiyah Bengkulu, Bengkulu
  • RG Guntur Alam Universitas Muhammadiyah Bengkulu, Bengkulu
  • Ardi Wijaya Universitas Muhammadiyah Bengkulu, Bengkulu

DOI:

https://doi.org/10.30865/jurikom.v12i6.9396

Keywords:

Naïve Bayes, SVM, Performance, Sentiment Analysis

Abstract

The imbalance of user reviews in the Roblox game creates accuracy challenges in sentiment classification, where the number of positive reviews significantly exceeds negative ones, causing the model to struggle particularly in identifying negative sentiment. This study aims to compare the performance of the Naïve Bayes and Support Vector Machine algorithms in classifying sentiment on imbalanced data. The research was conducted through several stages, including web scraping, pre-processing, automatic labeling using CNN, data splitting, model training, and performance evaluation using a Confusion Matrix. The findings reveal that Naïve Bayes tends to classify most samples as positive, resulting in very high recall for the positive class, reaching 0.995–0.997, but poor performance on the negative class, leading to consistent imbalance across all test ratios. In contrast, SVM achieves higher accuracy and more stable performance, with a Macro-F1 score of 0.740–0.769 and an AUC-PR of 0.936–0.942. The performance differences between the two models are statistically significant, with p-values of 0.001 and 0.0004, indicating that SVM is more effective in identifying both majority and minority classes. However, in terms of computational efficiency, Naïve Bayes is superior, requiring only 0.003–0.016 seconds of training time. Therefore, SVM is considered more reliable and robust for sentiment analysis on imbalanced data such as Roblox game reviews, whereas Naïve Bayes is more suitable when processing speed is the priority.

References

[1] A. H. Nurdy and A. Rahim, “Analisis Sentimen Ulasan Game Stumble Guys Pada Playstore Menggunakan Algoritma Naïve Bayes Sentiment Analysis of Stumble Guys Game Reviews on Playstore Using the Naïve Bayes Algorithm,” vol. 13, no. November, pp. 388–395, 2024, doi: 10.34148/teknika.v13i3.993.

[2] N. Kadek, F. Puspita, I. G. I. Sudipa, I. W. Sunarya, N. Wayan, and J. Kusuma, “Sentiment Analysis of Roblox Game Reviews on Google Play Store Using Lexicon-SVM Integration,” vol. 9, no. 4, pp. 1863–1876, 2025.

[3] U. Hasanah, B. Sunarko, and S. Hidayat, “Classification of Game Genres Based on Interaction Patterns and Popularity in the Virtual World of Roblox,” 2025, doi: 10.47738/ijrm.v2i3.30.

[4] E. P. Wijaya and M. H. Rifqo, “Jurnal Informatika : Jurnal pengembangan IT Analisis Sentimen terhadap Lembaga Danantara Menggunakan Evolutionary Fuzzy Rule-Based Classification System,” vol. 10, no. 4, pp. 967–977, 2025, doi: 10.30591/jpit.v10i4.8845.

[5] I. K. A. A. Hidayah, “PERBANDINGAN ALGORITMA NAIVE BAYES DENGAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI,” 2024.

[6] M. Safrudin, U. Hayati, T. Informatika, K. Cirebon, and G. Impact, “PERBANDINGAN KINERJA NAÏVE BAYES DAN SUPPORT VECTOR MACHINE,” vol. 8, no. 3, pp. 3182–3188, 2024.

[7] S. D. Parameswari, M. Lubis, S. Suakanto, Y. Z. Ramadhan, N. Amanah, and R. A. Dila, “Studi Perbandingan Naï ve Bayes dan Support Vector Machine ( SVM ) dalam Analisis Sentimen Pengguna Metaverse,” vol. 4, no. 3, pp. 1059–1065, 2025.

[8] U. Semarang, “ANALISIS SENTIMEN MENGGUNAKAN ALGORITMA NAIVE BAYES TERHADAP REVIEW GAME DOTA 2 PADA STEAM COMMUNITY ( Sentiment Analysis Using Naive Bayes Algorithms On DOTA 2 Game Reviews in The Steam Community ) Fakultas Teknologi Informasi dan Komunikasi,” pp. 1–4.

[9] A. Rahim et al., “PERBANDINGAN METODE NAÏVE BAYES DAN SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PADA ULASAN PENGGUNA APLIKASI ALIBABA DI GOOGLE PLAY STORE,” vol. 9, no. 2, pp. 3050–3057, 2025.

[10] R. Sistem, J. W. Iskandar, Y. Nataliani, F. T. Informasi, U. Kristen, and S. Wacana, “JURNAL RESTI,” vol. 5, no. 158, pp. 1120–1126, 2026.

[11] A. Saputra, S. Ali, R. Subhan, and I. Sidiq, “Perbandingan Metode Naive Bayes Dan Support Vector Machine Terhadap Ulasan Aplikasi Ojol The Game .,” vol. 08, pp. 84–89, 2024.

[12] R. Maheri, F. N. Salisah, and F. Muttakin, “Analisis sentimen ulasan aplikasi m-paspor menggunakan,” vol. 10, no. 1, pp. 448–458, 2025.

[13] A. S. Rahayu and A. Fauzi, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine ( SVM ) Pada Analisis Sentimen Spotify,” vol. 4, pp. 349–354, 2022, doi: 10.30865/json.v4i2.5398.

[14] A. Salsabila, B. Priyatna, and A. Hananto, “Komparasi Kinerja Model Naive Bayes , SVM , dan BERT dalam Klasifikasi Sentimen Ulasan Pada Aplikasi YUMMY,” vol. 4, no. 2, pp. 42–47, 2025.

[15] A. A. Munandar et al., “Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM,” vol. 7, no. 1, pp. 1–7, 2026.

[16] B. A. Maulana and M. J. Fahmi, “Sentiment Analysis of Pluang Applications With Naive Bayes and Support Vector Machine ( SVM ) Algorithm Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine ( SVM ),” vol. 4, no. April, pp. 375–384, 2024.

[17] N. Hadi and D. Sugiarto, “Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM , Logistic Regression dan Naïve Bayes,” vol. 10, no. 1, pp. 37–49, 2025, doi: 10.30591/jpit.v10i1.7106.

[18] R. A. Saputra, “ANALISIS SENTIMEN REVIEW SKINCARE SKINTIFIC DENGAN ALGORITMA SUPPORT VECTOR MACHINE,” vol. 12, no. 2, 2024.

[19] A. Lowell, A. Lowell, K. Candra, and E. Indra, “Perbandingan Metode Support Vector Machine ( SVM ) Dan Naive Bayes Pada Analisis Sentimen Ulasan Aplikasi OVO JURNAL MEDIA INFORMATIKA [ JUMIN ],” vol. 6, no. 2, pp. 896–905, 2025.

[20] Y. P. Astuti et al., “Implementasi Algoritma Convolutional Neural Network ( CNN ) Untuk Klasifikasi Jenis Tanah Berbasis Android,” vol. 8, no. 3, pp. 220–225, 2023.

[21] P. Egamo, A. Hermawan, P. S. Informatika, F. Sains, U. T. Yogyakarta, and D. I. Yogyakarta, “Implementasi Algoritma Convolutional Neural Network untuk Pendeteksi Objek dalam Rumah pada Mata Rabun,” vol. 9, pp. 173–183, 2023.

[22] E. Rianty and K. Budi, “Perbandingan Kinerja Algoritma C4 . 5 dan Naive Bayes Dalam Klasifikasi Data Penjualan Buku PT . XYZ,” JURIKOM (Jurnal Ris. Komputer), vol. 12, no. 6, pp. 1–12, 2025, doi: 10.30865/jurikom.v12i6.9345.

[23] M. A. Y. Idris Kumala Surya Irma, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine ( SVM ),” JJEEE, vol. 5, no. 1, pp. 32–35, 2023.

[24] D. A. Agustina, S. Subanti, and E. Zukhronah, “Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Marketplace di Indonesia Menggunakan Algoritma Support Vector Machine,” Indones. J. Appl. Stat., vol. 3, no. 2, pp. 109–122, 2021, doi: 10.13057/ijas.v3i2.44337.

[25] S. D. Wahyuni and R. H. Kusumodestoni, “Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting,” Bull. Inf. Technol., vol. 5, no. 2, pp. 56–64, 2024, doi: 10.47065/bit.v5i2.1247.

[26] B. Ramadhani and R. R. Suryono, “Komparasi Algoritma Naïve Bayes dan Logistic Regression Untuk Analisis Sentimen Metaverse,” J. Media Inform. Budidarma, vol. 8, no. 2, pp. 714–725, 2024, doi: 10.30865/mib.v8i2.7458.

[27] Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, no. 1, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

[28] R. Rahmadani, A. Rahim, and R. Rudiman, “Analisis Sentimen Ulasan ‘Ojol the Game’ Di Google Play Store Menggunakan Algoritma Naive Bayes Dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4988.

[29] Y. I. Royan, A. Ayu, and K. Asri, “G-Tech : Jurnal Teknologi Terapan,” vol. 9, no. 3, pp. 1544–1553, 2025.

Additional Files

Published

2025-12-31

How to Cite

Dia Komalla, Alam, R. G., & Wijaya, A. (2025). Analisis Performa Algoritma Naïve Bayes dan SVM Menggunakan Python Pada Ulasan Sentimen Game Roblox . JURNAL RISET KOMPUTER (JURIKOM), 12(6), 1036–1048. https://doi.org/10.30865/jurikom.v12i6.9396