Prediksi Harga Rumah Menggunakan Algoritma Regresi Linier,Random Forest, Dan Gradient Boosting
DOI:
https://doi.org/10.30865/jurikom.v12i6.9369Keywords:
House Price Prediction, Linear Regression, Random Forest, Gradient Boosting, Machine Learning, Grid SearchAbstract
House price prediction is a crucial issue in the property sector because it is influenced by various interrelated factors, such as building characteristics and environmental conditions. Accurate prediction using conventional approaches is often difficult and can lead to errors in decision-making. Therefore, this study aims to develop and compare the performance of house price prediction models using three machine learning algorithms: Linear Regression, Random Forest, and Gradient Boosting. The dataset used is the Home Value Insights Dataset on Kaggle, which consists of 1,000 houses with eight main attributes. The research stages include data pre-processing, dividing training and test data, model training, parameter optimization using GridSearchCV, and performance evaluation based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²) metrics using the 10-Fold Cross Validation method. The test results show that Linear Regression provides the best performance with an R² value of 0.8539 and a lower prediction error rate than Random Forest and Gradient Boosting. Although the ensemble model shows competitive results, increasing model complexity does not result in a significant increase in accuracy, so Linear Regression is considered the simplest, most efficient, and most easily interpreted approach for house price prediction systems on datasets with characteristics that tend to be linear.
References
[1] K. D. Sanjaya, “Prediksi Harga Rumah Dengan Metode Regresi Linear Dan Support Vector Regression Di Daerah Tebat Jakarta Selatan,” J. Komput. dan Inform., vol. 19, no. 2, pp. 95–102, 2024.
[2] R. Tanamal, N. Minoque, T. Wiradinata, Y. Soekamto, and T. Ratih, “House Price Prediction Model Using Random Forest in Surabaya City,” TEM J., vol. 12, no. 1, pp. 126–132, 2023, doi: 10.18421/TEM121-17.
[3] U. M. Semarang, M. Of, F. Influencing, and G. Development, “Jurnal statistika,” vol. 12, no. 2, pp. 29–41, 2024, doi: 10.14710/JSUNIMUS.12.2.2024.29-41.
[4] M. B. S. Qolbi, T. N. Puteh, R. Rivandi, and C. Rozikin, “Prediksi Harga Rumah Di Jakarta Pusat Menggunakan Algoritma Machine Learning,” J. Ilmu Komput. dan Bisnis, vol. 16, no. 1, pp. 16–24, 2025, doi: 10.47927/jikb.v16i1.840.
[5] R. Annamoradnejad and I. Annamoradnejad, “Machine Learning for Housing Price Prediction,” Encycl. Data Sci. Mach. Learn., no. September 2022, pp. 2728–2739, 2022, doi: 10.4018/978-1-7998-9220-5.ch163.
[6] Dhiwa Aqsha, “Perbandingan Kinerja Algoritma Extreme Gradient Boosting Dan Random Forest Untuk Prediksi Harga Rumah Di Jabodetabek,” J. Ilmu Komput. dan Sist. Inf., vol. 13, no. 1, pp. 1–7, 2025, doi: 10.24912/jiksi.v13i1.32863.
[7] S. Suakanto, A. Christy, V. J. L. Engel, and D. Angela, “Pengembangan Sistem Prediksi Harga Pasar Properti Menggunakan Big Data Platform,” J. Telemat., vol. 13, no. 1, pp. 19–26, 2019, doi: 10.61769/telematika.v13i1.257.
[8] A. Fuadah, A. M. Siregar, and Y. Cahyana, “Model Prediksi Harga Rumah Di Kabupaten Bandung Menggunakan Multiple Linear Regression Dan Support Vector Regression,” Sci. Student J. Information, Technol. Sci., vol. 5, no. 2, pp. 10–16, 2024.
[9] R. R. Hallan and I. N. Fajri, “Prediksi Harga Rumah menggunakan Machine Learning Algoritma Regresi Linier,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 7, no. 1, pp. 57–62, 2025, doi: 10.47233/jteksis.v7i1.1732.
[10] A. Jl et al., “Analisis Prediksi Harga Rumah di Bandung Menggunakan Regresi Linear Berganda Rafif Nauval Tuah Siregar Vijay Sitorus Universitas Negeri Medan Willy Pramudia Ananta perbandingan melalui penalaran berbasis kasus ," yang dilakukan oleh I-Cheng Yeh , Tzu- yan,” vol. 1, no. 6, 2023.
[11] A. Widyastuti, “Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Metode Multiple Linear Regression,” SUBMIT J. Ilm. Teknol. Infomasi dan Sains, vol. 4, no. 1, pp. 30–35, 2024, doi: 10.36815/submit.v4i1.3343.
[12] H. Hakim, D. Kamil, and B. Alatas, “Pendekatan Machine Learning untuk Estimasi Harga Rumah dengan Regresi Linier,” ALPHA J. Sci. Technol., vol. 1, no. 1, pp. 18–22, 2025, doi: 10.70716/alpha.v1i1.99.
[13] R. Fauzan Almahdy and W. D. Mega Pradnya, “Prediksi Harga Rumah Di Kabupaten Bantul Menggunakan Algoritma Support Vector Regression,” J. Tek. Inform. dan Sist. Inf., vol. 11, no. 2, pp. 152–165, 2024.
[14] R. Hidayat et al., “Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produksi di Supermarket,” Simkom, vol. 10, no. 1, pp. 101–109, 2025, doi: 10.51717/simkom.v10i1.703.
[15] A. P. Wardani, H. A. Irawan, M. P. Syah, M. A. Akmal, N. U. Nariswari, and K. M. Hindrayani, “Analisis dan Prediksi Harga Properti Rumah di Kota Surabaya dengan Algoritma Random Forest,” Pros. Semin. Nas. Sains Data, vol. 4, no. 1, pp. 885–894, 2024, doi: 10.33005/senada.v4i1.375.
[16] Mohit Jain and Arjun Srihari, “House price prediction with Convolutional Neural Network (CNN),” World J. Adv. Eng. Technol. Sci., vol. 8, no. 1, pp. 405–415, 2023, doi: 10.30574/wjaets.2023.8.1.0048.
[17] F. A. Rangkuti, Khairunnisa, and S. Sundari, “Implementasi Gradient Boosting Machines Untuk Prediksi Harga Rumah Pada Jakarta Selatan,” J. Kecerdasan Buatan dan Teknol. Inf., vol. 4, no. 2, pp. 164–172, 2025, doi: 10.69916/jkbti.v4i2.318.
[18] G. Khalda Rifdan, N. Rahaningsih, A. Bahtiar, I. Ali, and N. Dienwati Nuris, “Ramalan Penjualan Rumah Menggunakan Algoritma Linear Regresi Di Tebet Jakarta Selatan,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1847–1851, 2024, doi: 10.36040/jati.v8i2.9022.
[19] A. Fauzi, N. Maulidah, R. Supriyadi, H. Nalatissifa, and S. Diantika, “Prediksi Harga Properti Di Indonesia Menggunakan Algoritma Random Forest,” RIGGS J. Artif. Intell. Digit. Bus., vol. 4, no. 1, pp. 43–49, 2025, doi: 10.31004/riggs.v4i1.367.
[20] M. N. Hibatulloh, G. D. Prakoso, A. D. Putri Yunus, and T. D. Putra, “Prediksi Harga Rumah di Bandung 2024 Menggunakan Ensemble Learning: Analisis Komparatif dan Interpretabilitas,” J. Inform. J. Pengemb. IT, vol. 10, no. 2, pp. 484–493, 2025, doi: 10.30591/jpit.v10i2.8200.
[21] R. Riyandi, R. Roy Hakiki, Dealmus, Y. O. Reins Dima, and N. P, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Metode Regresi Linear Berganda Berbasis Shiny R,” Inform. J. Ilmu Komput., vol. 21, no. 1, pp. 1–13, 2025, doi: 10.52958/iftk.v21i1.10563.
[22] S. Anggellica, B. N. Sari, and I. Maulana, “Prediksi Harga Rumah Menggunakan Multiple Linear Regression (Studi Kasus : Kabupaten Karawang Pada Website Lamudi.Co.Id),” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 2, 2025, doi: 10.23960/jitet.v13i2.6370.
[23] Prokshitha, “Home Value Insights Dataset,” 2024, Kaggle Datasets, San Francisco (opsional, markas Kaggle). [Online]. Available: https://www.kaggle.com/datasets/prokshitha/home-value-insights



