Pengembangan Sistem Pendukung Keputusan Berbasis Machine Learning untuk Prediksi Kinerja Dosen Menggunakan Data Historis Evaluasi Pembelajaran

Authors

  • Ismail Abdurrozzaq Z Universitas Muhammadiyah Ponorogo, Ponorogo
  • Ida Widaningrum Universitas Muhammadiyah Ponorogo, Ponorogo
  • Yovi Litanianda Universitas Muhammadiyah Ponorogo, Ponorogo

DOI:

https://doi.org/10.30865/jurikom.v12i6.9363

Keywords:

Lecturer Perfomance, Decission Support System, Machine Learning, Regretion, Interactive Dashboard

Abstract

Lecturer performance evaluation is a crucial component in efforts to improve the quality of higher education. However, traditional evaluation methods still face various challenges, such as subjective assessments, a lack of consistent standards, and lengthy decision-making processes. These conditions highlight the need for a more measurable, accurate, and data-driven evaluation mechanism, particularly in the context of ongoing digital transformation. This study aims to design and develop a lecturer performance prediction system using a machine learning (ML) approach within a Decision Support System (DSS) framework. The research approach involves processing historical lecturer data covering aspects of Teaching (including student evaluation scores, instructional innovation, and attendance levels), Research (number of publications, H-index, and participation in academic conferences), Community Service, and other administrative activities. Predictive models were developed and compared using several machine learning algorithms, namely Random Forest, Support Vector Machine (SVM), Multilayer Perceptron (MLP), and XGBoost. Experimental results show that Random Forest achieved an accuracy of 88.0%, SVM 85.0%, and MLP 87.0%, while XGBoost demonstrated the best performance with an accuracy of 92.0%, precision of 91.0%, recall of 90.0%, and an F1-score of 91.0%. Based on these results, XGBoost was selected as the primary model for the DSS. In addition, the system is equipped with a rule-based module that generates follow-up recommendations based on the model’s prediction results. All system components are implemented in an interactive dashboard using the Streamlit framework, enabling users to input data, monitor prediction outcomes, and obtain decision recommendations in a fast and data-driven manner.

Author Biographies

Ida Widaningrum, Universitas Muhammadiyah Ponorogo, Ponorogo

Fakultas Teknik

Yovi Litanianda, Universitas Muhammadiyah Ponorogo, Ponorogo

Fakultas Teknik

References

[1] B. M. Sukoco et al., “Strategi Peningkatan Kualitas Menuju Perguruan Tinggi Berkelas Dunia,” 2023.

[2] N. Amalia, “Tridharma Perguruan Tinggi untuk Membangun Akademik dan Masyarakat Berpradaban,” Karimah Tauhid, vol. 3, no. 4, pp. 4654–4663, 2024.

[3] dkk Nurhadi, Tridarma Perguruan Tinggi (Teori dan Praktik). Pamekasan: IAIN Madura Press, 2024. Accessed: July 28, 2025. [Online]. Available: https://repository.iainmadura.ac.id/1075/

[4] H. Zakaria and N. Jaya, “Sistem Penilaian Kinerja Dosen Dengan Menggunakan Fuzzy Inference System Metode Mamdani,” J Artif Intell, vol. 2, no. 4, 2021.

[5] N. Norhikmah et al., Buku Ajar Sistem Pengambilan Keputusan. PT. Sonpedia Publishing Indonesia, 2024.

[6] Usman and S. Naim, “STUDI PENILAIAN KINERJA DOSEN DALAM MENINGKATKAN KUALITAS PEMBELAJARAN DI PERGURUAN TINGGI,” Al-Ittihad J. Pemikir. Dan Huk. Islam, vol. 11, no. 1, Art. no. 1, Feb. 2025, doi: 10.61817/ittihad.v11i1.235.

[7] M. A. Ramadhan, R. Setyaningsih, and Irawati, “Implementasi Sistem Penjaminan Mutu Internal (SPMI) di Perguruan Tinggi,” J. Kependidikan Islam, vol. 15, no. 1, Art. no. 1, Feb. 2025, doi: 10.15642/jkpi.2025.15.1.23-33.

[8] I. Widaningrum, “Evaluasi Kinerja Dosen Menggunakan Metode Fuzzy Multi-Attribute Decision Making (FMADM) Dengan Pengembangan (Studi Kasus: Universitas Muhammadiyah Ponorogo),” Semnasteknomedia Online, vol. 1, no. 1, pp. 09–61, 2013.

[9] I. Widaningrum, “SISTEM INFORMASI EVALUASI KINERJA DOSEN ASPEK KOMPETENSI DAN TRIDARMA DI LINGKUNGAN UNIVERSITAS MUHAMMADIYAH PONOROGO,” MULTITEK Indones., vol. 6, no. 1, Art. no. 1, May 2016, doi: 10.24269/mtkind.v6i1.121.

[10] I. Widaningrum, “Analisis Hubungan Proses Pembelajaran dengan Kepuasan Mahasiswa Menggunakan Logika Fuzzy,” Sci. J. Inform., vol. 2, no. 1, pp. 91–98, 2015.

[11] D. T. RISET, “Kementerian pendidikan, kebudayaan, riset, dan teknologi,” Universitas, vol. 1, no. 1, p. 2, 2022.

[12] R. A. Sari, F. Dirayati, and T. M. F. Hs, “PENILAIAN KINERJA PENGAJARAN DOSEN MENGGUNAKANHASIL DATA PENGISIAN YANG TERKOMPUTERISASI,” J. SIMADA Sist. Inf. Dan Manaj. Basis Data, vol. 7, no. 1, Art. no. 1, June 2024, doi: 10.30873/simada.v7i1.411.

[13] K. Kiswanto, B. W. Benny, Y. Yuri, M. Mar, S. Sarwindah, and S. Supardi, “Penerapan Logika ANFIS Sistem Penilaian Kinerja Dosen Pada Tri Dharma dan Perilaku Kerja,” J. Sist. Inf. Bisnis, vol. 12, no. 1, pp. 57–65, 2022.

[14] A. Sasmita, “Pengembangan Sistem Analisis Sentimen Untuk Evaluasi Kinerja Dosen Universitas Pendidikan Ganesha Dengan Metode Naïve Bayes,” 2022.

[15] W. E. Jayanti and E. Meilinda, “Peran Dan Kepercayaan Terhadap Artificial Intellegence Dalam Peningkatan Kinerja Dosen,” Pendidik. Tambusai, vol. 8, no. 1, pp. 5111–17, 2024.

[16] M. R. Sampebua et al., Sistem Pendukung Keputusan:: Teori dan Implementasi. PT. Sonpedia Publishing Indonesia, 2025.

[17] S. M. P. Pawiti, I. A. Zulkarnain, and A. R. Yusuf, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PUPUK KIMIA TANAMAN PORANG MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW),” J. Responsif Ris. Sains Dan Inform., vol. 6, no. 2, pp. 247–256, Aug. 2024, doi: 10.51977/jti.v6i2.1738.

[18] R. S. Y. Zebua et al., “10 METODE SPK FAVORIT DI MASA DEPAN”.

[19] G. S. Mahendra et al., Tren Teknologi AI: Pengantar, Teori, dan Contoh Penerapan Artificial Intelligence di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.

[20] F. D. Astuti and B. H. Winarno, “Implementasi Gap Analysis untuk Evaluasi Kinerja Dosen Berdasarkan Sasaran Mutu,” Format J. Ilm. Tek. Inform., vol. 10, no. 1, p. 101, 2021.

Additional Files

Published

2025-12-31

How to Cite

Z, I. A., Widaningrum, I., & Litanianda, Y. (2025). Pengembangan Sistem Pendukung Keputusan Berbasis Machine Learning untuk Prediksi Kinerja Dosen Menggunakan Data Historis Evaluasi Pembelajaran . JURNAL RISET KOMPUTER (JURIKOM), 12(6), 1026–1035. https://doi.org/10.30865/jurikom.v12i6.9363