Penerapan Arsitektur Deep Learning EfficientNetB0 Berbasis Citra Digital untuk Meningkatkan Kinerja Sistem Klasifikasi Sampah Organik, Anorganik, dan B3
DOI:
https://doi.org/10.30865/jurikom.v12i6.9360Keywords:
Deep Learning, CNN, Transfer Learning, EfficientNet-B0, Waste classification, Hazardous WasteAbstract
Waste management in Indonesia remains a major challenge due to increasing waste volumes and the low efficiency of manual sorting processes at Landfills (TPA). This study aims to improve the performance of an automated waste classification system for three categories: organic, inorganic, and hazardous and toxic waste (B3) using deep learning-based computer vision technology. The proposed method is the EfficientNetB0 architecture with a transfer learning approach, whose performance is compared with four other pre-trained architectures (VGG-16, InceptionV3, MobileNetV2, and ResNet50). The dataset used consists of 7,003 valid images collected from public sources and manual acquisition after a data cleaning process. The dataset is divided into 70% as training data, 20% as validation data, and 10% as test data. Data augmentation and class balancing strategies are used to increase variation and overcome data imbalance between classes. Training is conducted in two stages: Feature Extraction and Fine-Tuning, with consistent hyperparameters for a fair comparison. Performance evaluation is performed using accuracy, precision, recall, and f1-score metrics. The test results show that EfficientNetB0 managed to achieve the best performance with an accuracy rate of 96.87%. Modern architectures like EfficientNetB0 have proven capable of extracting complex features with good computational efficiency, thereby holding the potential for use in AI-based automatic waste sorting systems to support more effective and sustainable waste management.
References
[1] L. Listyalina, R. Retno Utami, U. Fadzilia Arifin, and N. Putri, “The Application of Artificial Intelligence in Waste Classification as an Effort In Plastic Waste Management,” Jurnal Informatika dan Teknologi Informasi, vol. 21, no. 1, pp. 1–13, Jun. 2024, doi: 10.31515/telematika.v21i1.11977.
[2] M. Haqqi, L. Rochmah, A. Dwi Safitri, and R. Adhi Pratama, “Implementation of Machine Learning to Identify Types of Waste Using CNN Algorithm,” Jurnal Fasilkom - teknologi Informasi dan Ilmu Komputer Universitas Muhammadiyah Riau, vol. 14, pp. 761–765, 2024.
[3] T. H. Yan, S. N. M. Azam, Z. M. Sani, and A. Azizan, “Accuracy study of image classification for reverse vending machine waste segregation using convolutional neural network,” International Journal of Electrical and Computer Engineering, vol. 14, no. 1, pp. 366–374, Feb. 2024, doi: 10.11591/ijece.v14i1.pp366-374.
[4] M. Malik et al., “Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models,” Sustainability (Switzerland), vol. 14, no. 12, Jun. 2022, doi: 10.3390/su14127222.
[5] D. F. Kuncoro, A. Wirasto, and D. N. Triwibowo, “Klasifikasi Jenis Sampah Berbasis Convolutional Neural Network dengan Optimasi Hyperparameter Tuning Arsitektur MobileNet,” Methomika: Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 9, no. 1, Apr. 2025, doi: 10.46880/jmika.Vol9No1.pp130-144.
[6] D. Sadida Aulia, H. Arwoko, and E. Asmawati, “Klasifikasi Sampah Rumah Tangga Menggunakan Metode Convolutional Neural Network,” METIK JURNAL, vol. 8, no. 2, pp. 114–120, Dec. 2024, doi: 10.47002/metik.v8i2.956.
[7] A. Ikhlas and B. Hendrik, “Sistemasi: Jurnal Sistem Infoermasi Literature Review: Studi Komparasi Klasifikasi Sampah menggunakan Algoritma Deep Learning,” Apr. 2025. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[8] M. Chhabra, B. Sharan, M. Elbarachi, and M. Kumar, “Intelligent waste classification approach based on improved multi-layered convolutional neural network,” Multimed Tools Appl, vol. 83, no. 36, pp. 84095–84120, Nov. 2024, doi: 10.1007/s11042-024-18939-w.
[9] D. Shafek, H. W. Hilou, and M. Ahmed, “Classification of waste images using deep learning technique,” 2025. [Online]. Available: www.jart.icat.unam.mx
[10] Doly Ilham Saputra Huta Julu and Dewi Nurdiyah, “Klasifikasi Sampah Organik dan Non Organik Menggunakan Transfer Learning,” Jurnal Transformatika, vol. 23, no. 1, pp. 12–29, Jul. 2025, doi: 10.26623/transformatika.v23i1.12201.
[11] W. Vidiadivani and G. K. I. Suhartana, “W. Vidiadivani & K. G. Suhartana, Jurnal Elektronik Ilmu Komputer Udayana, 2024,” Jurnal Elektronik Ilmu Komputer Udayana, vol. 12, 2024.
[12] R. Firnando, M. Ali Buchari, A. Dwi Marjusalinah, and R. Fadli Isnanto, “Performance analysis of MobileNetV2 based automatic waste classification using transfer learning,” Jurnal Mandiri IT, vol. 14, no. 1, pp. 257–268, 2025, [Online]. Available: www.ejournal.isha.or.id/index.php/Mandiri
[13] T. Kurniawan, K. Khadijah, and R. Kusumaningrum, “An Efficient Model for Waste Image Classification Using EfficientNet-B0,” Jurnal Teknik Informatika (Jutif), vol. 6, no. 3, pp. 1147–1158, Jun. 2025, doi: 10.52436/1.jutif.2025.6.3.4417.
[14] I. S. Lestari, J. Jumadi, and N. Lukman, “Implementasi Convolutional Neural Network dengan Pre-Trained Model MobileNetV2 untuk Deteksi Kolestrol,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 9, no. 2, pp. 173–183, Jul. 2024, doi: 10.36341/rabit.v9i2.4732.
[15] L. E. Elvitaria, I. P. Sari, and T. I. Buchari, “Klasifikasi Telur Cacing Berbasis Gambar Menggunakan Jaringan Saraf Konvolusional,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 10, no. 2, pp. 518–526, Jul. 2025, doi: 10.36341/rabit.v10i2.6207.
[16] Risfendra, G. F. Ananda, and H. Setyawan, “Deep Learning-Based Waste Classification with Transfer Learning Using EfficientNet-B0 Model,” Jurnal RESTI : Rekayasa Sistem dan Teknologi Informasi, vol. 8, no. 4, pp. 535–541, Aug. 2024, doi: 10.29207/resti.v8i4.5875.
[17] K. N. A. Nur, N. I. Addyna, A. P. Windarto, A. Wanto, and P. Poningsih, “Optimization of the InceptionV3 Architecture for Potato Leaf Disease Classification,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 10, no. 4, pp. 849–858, May 2025, doi: 10.33480/jitk.v10i4.6554.
[18] Muslihati, S. Sahibu, I. Taufik, and P. Studi Sistem Komputer, “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of the Convolutional Neural Network Algorithm for Classifying Types of Organic and Non-Organic Waste Implementasi Algoritma Convolutional Neural Network untuk Klasifikasi Jenis Sampah Organik dan Non Organik,” Institut Riset dan Publikasi Indonesia (IRPI), vol. 4, no. 3, pp. 840–852, 2024, doi: 10.57152/malcom.v7i2.1346.
[19] S. J. Grace and D. Gunawan, “Perbandingan CNN, RESNET50, dan Vision Transformer untuk Klasifikasi Kanker Payudara Berbasis Web,” Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, vol. 10, no. 2, pp. 945–956, Jul. 2025, doi: 10.36341/rabit.v10i2.6420.
[20] L. Stephen Pieters, “Development of Automatic Waste Classification System using CNN Based Deep Learning to Support Smart Waste Management,” Jurnal Inovtek Polbeng - Seri Informatika, vol. 10, no. 1, Mar. 2025.
[21] A. A. Qurrota, Suhartono, and T. Mukti Lestari, “Implementation of Convolutional Neural Network in Image-Based Waste Classification,” Aug. 2025. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC



