Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Data Penjualan Buku PT. XYZ

Authors

  • Erfina Rianty Universitas Dinamika Bangsa, Jambi
  • Kurnia Budi Universitas Dinamika Bangsa, Jambi
  • Effiyaldi Universitas Dinamika Bangsa, Jambi

DOI:

https://doi.org/10.30865/jurikom.v12i6.9345

Keywords:

Classification, C4.5, Naive Bayes, Book Sales, RapidMiner

Abstract

Book sales data is an important component in supporting marketing strategies and managerial decision-making. The objective of this research is to evaluate and compare the effectiveness of the C4.5 and Naive Bayes in processing book sales data at PT. Sonpedia Publishing Indonesia. The dataset used consists of 299 book sales records, processed using RapidMiner software with two validation methods, namely Split Data (80:20) and 10-fold cross validation. Experimental results reveal that the C4.5 algorithm with the split data method obtained an accuracy 88.33%, precision 94.29%, recall 86.84%, and F-Score 90.41%. Using 10-Fold Cross Validation, the performance decreased with an accuracy 86.60%, precision of 92.53%, recall 85.64%, and F-Score 88,99%. In contrast, the Naïve Bayes algorithm demonstrated better and consistent performance. With the Split Data method (80:20), it obtained an accuracy  90.00%, precision 90.00%, recall  94.74%, and an F-Score  92.31%. Furthermore, its performance improved with 10-Fold Cross Validation, achieving an accuracy 91.29%, precision 92.63%, recall 93.62%, and F1-Score of 93.10%. These findings suggest that naive bayes produces more consistent and accurate classification results compared to C4.5. The research is intended to act as a guide for the development of book sales prediction systems that support the effetiveness and efficiency of bussiness decision making.

References

[1] A. Rachmanto, “Sistem Informasi Akuntansi Penjualan Perusahaan Dagang,” J. Ris. Akunt., vol. 5, no. 1, 2017, doi: 10.34010/jra.v5i1.506.

[2] Ahmad Thariq, “Implementasi Market Basket Analysis Menggunakan Algoritma Apriori pada Data Penjualan Buku,” J. Kolaboratif Sains, vol. 6, no. 3, hal. 154–163, 2023, doi: 10.56338/jks.v6i3.3333.

[3] R. Sovia, A. Muhammad, S. Arlis, Guslendra, dan S. Defit, “Analysis of sales levels of pharmaceutical products by using data mining algorithm C45,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 1, hal. 476–484, 2021, doi: 10.11591/ijeecs.v22.i1.pp476-484.

[4] L. Firdaus dan T. Setiadi, “Perbandingan Algoritma Naive Bayes, Decision Tree, dan KNN untuk Klasifikasi Produk Populer Adidas US dengan Confusion Matrix,” J. Sist. Komput. dan Inform., vol. 5, no. 2, hal. 185, 2023, doi: 10.30865/json.v5i2.6124.

[5] N. Yahya dan A. Jananto, “Komparasi Kinerja Algoritma C.45 Dan Naive Bayes Untuk Prediksi Kegiatan Penerimaan mahasiswa Baru (Studi Kasus : Universitas Stikubank Semarang),” Pros. SENDI, no. 2014, hal. 978–979, 2019.

[6] F. Solikhah, M. Febianah, A. L. Kamil, W. A. Arifin, dan Shelly Janu Setyaning Tyas, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” Tematik, vol. 8, no. 1, hal. 96–103, 2021, doi: 10.38204/tematik.v8i1.576.

[7] H. P. Herlambang, F. Saputra, M. H. Prasetiyo, D. Puspitasari, dan D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor,” J. Insa. - J. Inf. Syst. Manag. Innov., vol. 3, no. 1, hal. 21–28, 2023, doi: 10.31294/jinsan.v3i1.2097.

[8] M. Kamil dan W. Cholil, “Analisis Perbandingan Algoritma C4.5 dan Naive Bayes pada Lulusan Tepat Waktu Mahasiswa di Universitas Islam Negeri Raden Fatah Palembang,” J. Inform., vol. 7, no. 2, hal. 97–106, 2020, doi: 10.31294/ji.v7i2.7723.

[9] A. Tripathy, A. Agrawal, dan S. K. Rath, “Classification of Sentiment Reviews using N-gram Machine Learning Approach Classification of sentiment reviews using n-gram machine learning approach,” Expert Syst. Appl., vol. 57, no. October 2017, hal. 117–126, 2016, doi: 10.1016/j.eswa.2016.03.028.

[10] M. F. Kurniawan, N. Bayes, dan N. Bayes, “Komparasi Algoritma Data Mining untuk Klasifikasi Penyakit Kanker Payudara,” J. stmik wp, no. 1, hal. 1–8, 2014.

[11] A. Supriyadi, “Perbandingan Algoritma Naive Bayes dan Decision Tree ( C4.5 ) dalam Klasifikasi Dosen Berprestasi,” Gener. J., vol. 7, no. 1, hal. 39–49, 2023.

[12] T. Jurnal, S. Dan, R. Rayuwati, dan K. Koko, “Implementasi data mining untuk menentukan strategi penjualan buku bekas dengan pola pembelian konsumen menggunakan metode Apriori ( studi kasus : Kota Medan ),” vol. 16, no. 1, hal. 69–82, 2020.

[13] S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, hal. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

[14] Gellysa Urva dkk, Penerapan Data Mining di Berbagai Bidang. Jambi: PT Sonpedia Publishing Indonesia, 2023.

[15] T. Azhima dan Y. Siswa, “Analisis Penerapan Optimasi Perbandingan Kinerja Algoritma C4 . 5 dan Naïve Bayes Berbasis Particle Swarm Optimization ( PSO ) Untuk Mendeteksi Kanker Payudara,” vol. 2, no. Vii, hal. 1–9, 2018.

[16] M. Kantardzic, Data Mining Concepts, Model, Methods, and Algotithms. Wiley - IEEE Press, 2020.

[17] F. Fatmawati dan N. Narti, “Perbandingan Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Daring,” JTIM J. Teknol. Inf. dan Multimed., vol. 4, no. 1, hal. 1–12, 2022, doi: 10.35746/jtim.v4i1.196.

[18] A. Julianto dan S. Andayani, “Penerapan Data Mining Untuk Klasifikasi Produk Terlaris Menggunakan Algoritma Naive Bayes Pada Bengkel Motor,” J. Sist. dan Teknol. Inf. Komun., 2024.

[19] L. Rifky, Z. Nugraha, B. Saputra, D. Pratama, E. Raswir, dan Y. Pratama, “Implementasi Data Mining Untuk Penjualan Mobil Menggunakan Metode Naive Bayes,” J. Inform. Dan Rekayasa Komputer(JAKAKOM), vol. 2, no. 2, hal. 225–230, 2022, doi: 10.33998/jakakom.2022.2.2.109.

[20] Randi Farmana Putra dkk, Data Mining Algoritma dan Penerapannya. Jambi: PT Sonpedia Publishing Indonesia, 2023.

Additional Files

Published

2025-12-15

How to Cite

Erfina Rianty, Kurnia Budi, & Effiyaldi. (2025). Perbandingan Kinerja Algoritma C4.5 dan Naive Bayes Dalam Klasifikasi Data Penjualan Buku PT. XYZ. JURNAL RISET KOMPUTER (JURIKOM), 12(6), 793–804. https://doi.org/10.30865/jurikom.v12i6.9345