A Analisis Tingkat Kepuasan Konsumen Pada Pelayanan PT. AXZ Furniture Di Media Internet Menggunakan Metode VADER dan ARM
DOI:
https://doi.org/10.30865/jurikom.v12i6.9322Keywords:
Vader, Association Rule, Confusion Matrix, positif, negatif, netral, FurnitureAbstract
- Bali Art Furniture is one of the companies in Bali that exports furniture and home decoration products. During its operation, this company utilises various internet media platform services such as websites, Facebook Marketplace, Instagram, WhatsApp Business, Pinterest, and Google to communicate online with consumers. As the company has grown over time, it has recruited many employees to increase its capacity to provide services. The company has never conducted a systematic evaluation of customer service satisfaction, either internally or externally. Based on this phenomenon, a customer satisfaction analysis was conducted using customer comment data. Customer service satisfaction was evaluated using the VADER and ARM methods as a basis for comparing the effectiveness of these methods. Based on the analysis of the two methods, the VADER method produced an accuracy of 34%, while the ARM method produced an accuracy of 64%. The evaluation results using the confusion matrix of the VADER model showed that positive comments were more recognisable by the system than negative and neutral comments, as seen from the positive recall value of 0.90, which was greater than the negative and neutral recall values. Meanwhile, the evaluation results using the ARM method showed that neutral comments were more recognisable by the system than positive and negative comments, as seen from the neutral recall value of 0.88, which was greater than the positive and negative recall values. Thus, the highest accuracy results in the ARM model became the guideline in making recommendation results.
References
[1] I. P. Dedy, W. Darmawan, G. Aditra Pradnyana, I. Bagus, and N. Pascima, “Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram,” 2023, [Online]. Available: https://doi.org/10.31598
[2] N. Ariq Wijaya and A. Eviyanti, “Seminar Nasional & Call Paper Fakultas Sains dan Teknologi,” 2024.
[3] N. Anggraini, S. Kom, H. Suroyo, and M. Kom, “Comparison of Sentiment Analysis against Digital Payment ‘T-cash and Go-pay’ in Social Media Using Orange Data Mining Perbandingan Analisis Sentimen Terhadap Digital Payment ‘ T-cash dan Go-pay’ Di Sosial Media Menggunakan Orange Data Mining,” Journal of Information Systems and Informatics, vol. 1, no. 1, 2019, [Online]. Available: http://journal-isi.org/index.php/isi
[4] J. R. Maranatha, A. Ami, A. L. P. Putri, A. S. Nurjanah, G. F. Lutfiah, and O. Afifah, “Pelatihan Pemanfaatan Canva dan Pinterest Untuk Pendidikan,” Dedication : Jurnal Pengabdian Masyarakat, vol. 8, no. 1, pp. 19–26, Mar. 2024, doi: 10.31537/dedication.v8i1.1700.
[5] A. A. Zaini, “Pengaruh Kualitas Pelayanan Terhadap Kepuasan Konsumen (Studi pada Konsumen ‘Warung Bek Mu 2’ Banjaranyar Paciran Lamongan),” AL Maqashid : Journal of Economics and Islamic Business, vol. 02, pp. 47–54, 2022, doi: 10.55352.
[6] H. Herlawati, R. T. Handayanto, P. D. Atika, F. N. Khasanah, A. Y. P. Yusuf, and D. Y. Septia, “Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 2, pp. 153–163, Nov. 2021, doi: 10.31603/komtika.v5i2.6280.
[7] A. Sasmita, G. A. Pradnyana, and D. G. H. Divayana, “Pengembangan Sistem Analisis Sentimen Untuk Evaluasi Kinerja Dosen Universitas Pendidikan Ganesha Dengan Metode Naïve Bayes,” JST (Jurnal Sains dan Teknologi), vol. 11, no. 2, pp. 451–462, Sep. 2022, doi: 10.23887/jstundiksha.v11i2.44384.
[8] H. Leidiyana, “Perbandingan Algoritma Dalam Analisa Sentimen Krisis Evergrande Pada Kanal Berita Youtube,” 2021.
[9] I. Alfiyanti, “Perbandingan Penerapan Metode Association Rules,” 2023.
[10] A. Y. Setiawan, I. Gede, M. Darmawiguna, and G. A. Pradnyana, “Sentiment Summarization Evaluasi Pembelajaran Menggunakan Algoritma Lstm (Long Short Term Memory),” Kumpulan Artikel Mahasiswa Pendidikan Teknik Informatika (KARMAPATI), vol. 11, no. 2, 2022.
[11] A. Maulidah and F. A. Bachtiar, “Penerapan Metode Association Rule Mining Untuk Asosiasi Ulasan Terhadap Aspek Tempat Wisata Jawa Timur Park 3,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, pp. 1029–1038, 2021, doi: 10.25126/jtiik.202184417.
[12] P. Larasati and I. Komputer, “Penggunaan Algoritma Association Rule Mining Dalam Analisis Market Basket,” 2024.
[13] R. Lorentiana Wijayanti, R. Kurniawan, R. Herdiana, and H. Susana, “Komparasi Algoritma Apriori Dan Fp-Growth Untuk Memberikan Strategi Diskon,” 2024.
[14] B. Wicaksono and N. Cahyono, “Analisis Sentimen Komentar Instagram Pada Program Kampus Merdeka Dengan Algoritma Naive Bayes Dan Decision Tree,” 2024. [Online]. Available: https://situs.com
[15] I. Nyoman Saputra Wahyu Wijaya, K. Agus Seputra, and N. Putu Novita Puspa Dewi, “Fine Tunning Model Indobert Untuk Analisis Sentimen Berita Pariwisata Indonesia,” Jurnal Pendidikan Teknologi dan Kejuruan, vol. 22, no. 2, 2025, [Online]. Available: https://www.detik.com/search/searchall?query=wisata&siteid=3&sortby=time&fromdatex=01/01/2022&
[16] Padel Mohammad Agam, Muhammad Idzha Adhitya Ranius, Tata Sutabri, and A. Yani Ranius, “Sentiment Analysis pada Review Pengguna Aplikasi Snapchat dengan Vader dan Algoritma Machine Learning,” Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, vol. 5, no. 2, pp. 94–100, Jul. 2023, doi: 10.52303/jb.v5i2.105.
[17] G. Andika Joni, N. Cahyono, A. Baita, and N. Aini, “Analisis Sentimen Komentar Masyarakat Terhadap Rangka Esaf Honda Menggunakan Algoritma Naive Bayes Dan Super Vector Machine,” 2024.
[18] J. Khatib Sulaiman, P. Skincare Jasmarizal, and M. Khairul Anam, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Terhadap,” Indonesian Journal of Computer Science Attribution, vol. 13, no. 1, pp. 2024–1438, 2024.
[19] M. A. Ahwan, “Pembangunan WhatsApp Chatbot sebagai layanan kecerdasan buatan di Perpustakaan UIN Walisongo Semarang,” Berkala Ilmu Perpustakaan dan Informasi, vol. 20, pp. 119–132, 2024.
[20] N. K. T. A. Saputri, I. G. A. Gunadi, and I. M. G. Sunarya, “Analisis Sentimen Pelayanan Daring di Fakultas Teknik dan Kejuruan Universitas Pendidikan Ganesha Menggunakan Algoritma Naïve Bayes dan LSTM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 1120–1129, Jul. 2024, doi: 10.57152/malcom.v4i3.1336.
[21] M. Taufiq Anwar, D. Riandhita Arief Permana, P. STMI Jakarta, P. Sistem Informasi Industri Otomotif, J. Letjen Suprapto No, and J. Pusat, “Analisis Sentimen Masyarakat Indonesia Terhadap Produk Kendaraan Listrik Menggunakan VADER,” vol. 10, no. 1, pp. 783–792, 2023, [Online]. Available: http://jurnal.mdp.ac.id
[22] S. Arifin and B. A. Febryanto, “Analisis Sentimen Pengguna Aplikasi Merdeka Mengajar Menggunakan Metode Vader Lexicon,” SISFOTENIKA, vol. 15, no. 1, pp. 1–11, Jan. 2025, doi: 10.30700/sisfotenika.v15i1.513.
[23] D. P. Handayani Putri, N. P. Novita Puspa Dewi, I. K. Purnamawan, and N. W. Marti, “Perbandingan Performansi Support Vector Machine (Svm) dan Backpropagation untuk Klasifikasi Studi Mahasiswa Undiksha,” 2023.
[24] A. A. Gede Agung, I. W. Sujana, and D. P. Ambara, “Implementasi Model Manajemen Sekolah Berbasis Tri Hita Karana Untuk Membangun Budaya Sekolah Berkarakter Harmoni,” 2024.
[25] P. Wibawa Rahayu, I. Nyoman Bernadus, dan Aulia Iefan Datya, F. Teknologi dan Informatika, and U. Dhyana Pura, “Penerapan Data Mining Dalam Mengetahui Pola Transaksi Pembelian Obat Menggunakan Algoritma Apriori Di Apotek Kharisma Farma Tiga,” Jurnal Informatika dan Komputer, vol. 44, no. 1, pp. 44–55, 2024, doi: 10.35508/jicon.v12i1.13154.
[26] S. Mulyati, A. Nazir, E. Budianita, and E. P. Cynthia, “Penerapan Algoritma Apriori pada Transaksi Penjualan Produk Cat untuk Meningkatkan Strategi Bisnis,” Journal of Information System Research, vol. 5, no. 2, 2024, doi: 10.47065/josh.v5i2.4725.
[27] M. Menggunakan Vader Dan, C. Barka Ramadhan, and F. Sains Dan, “Analisis Sentimen Data Ulasan Aplikasi Indonesian Sentiment Lexicon Dengan Algoritma Naive Bayes Skripsi Disusun Oleh : Program Studi Teknik Informatika,” 2024.
[28] I Kadek Nicko Ananda, Ni Putu Novita Puspa Dewi, Ni Wayan Marti, and Luh Joni Erawati Dewi, “Klasifikasi Multilabel Pada Gaya Belajar Siswa Sekolah Dasar Menggunakan Algoritma Machine Learning,” Journal of Applied Computer Science and Technology, vol. 5, no. 2, pp. 144–154, Dec. 2024, doi: 10.52158/jacost.v5i2.940.
[29] K. Pramayasa, I. Md, D. Maysanjaya, G. Ayu, and A. Diatri Indradewi, “Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE,” 2023, [Online]. Available: https://doi.org/10.31598
[30] A. Setiawan, “Analisis Sentimen Masyarakat Di Twitter Terhadap Kejadian Bom Bunuh Diri Polsek Astana Anyar Menggunakan Algoritma Svm Dengan Leksikon Vader Dan Inset,” 2023.
[31] P. W. Ariyani, I. Made, G. Sunarya, I. Gede, and A. Gunadi, “Analisis Sentimen Masyarakat Terhadap Virus Corona Berdasarkan Opini Dari Twitter Menggunakan Metode Naive Bayes Dan K-Nearest Neighbor,” Jurnal Pendidikan Teknologi dan Kejuruan, vol. 22, no. 2, 2025.



