Edge AI Berbasis Computer Vision Untuk Meningkatkan Efektivitas Sistem Deteksi Pemilahan Sampah Real-Time Integrasi YOLOv8, Raspberry Pi 5 dan SEE
DOI:
https://doi.org/10.30865/jurikom.v13i1.9298Keywords:
YOLOv8, Raspberry Pi, Computer Vision, Real-time, Waste SortingAbstract
Waste management in Indonesia is still characterized by a high volume of improperly managed waste and low source-level segregation, causing recyclable materials to mix with other waste streams and reducing their recovery value. This situation calls for a sorting system that is effective, fast, and affordable, while also providing real-time operational information to support on site decision-making. This study presents an integrated computer vision approach using YOLOv8 deployed on a Raspberry Pi 5 with a Camera Module 3, connected to a real-time information system via Server-Sent Events (SSE) for monitoring and analytics. The methodology includes constructing a labeled dataset in YOLO TXT format, training a YOLOv8n model, deploying edge inference, and developing a backend API to receive detection outputs and stream them to a dashboard in real time. The system is evaluated using mean Average Precision (mAP), precision–recall, frames per second (FPS), and end-to-end latency from the camera to the dashboard. The prototype achieves an mAP@0.5 of 98.5% with precision–recall above 97%, an average throughput of 8.3 FPS at 640×640 resolution, and a median SSE communication latency of 0.5–0.6 ms, demonstrating the feasibility of a cost-effective solution for automated waste sorting. The system also provides logging, operational statistics, an offline queue, and an idempotency mechanism to support reliable operation in real-world deployments.
References
[1] H. Saidah, I. W. Yasa, L. W. Wiradharma, A. Suroso, and A. Supriyadi, “Upaya Mendorong Pencapaian SDGs-12 melalui Sosialisasi Pemanfaatan Sampah Organik menjadi Eco Enzyme pada Masyarakat Desa Jelantik,” 2024.
[2] D. N. A. Rahmanto, “Pengelolaan Sampah Berkelanjutan melalui Kolaborasi Komunitas dan Inovasi Teknologi: Studi Kasus di Dusun Karangber, Bantul,” Jun. 2024.
[3] E. K. Purwendah, Rusito, and A. Periani, “Kewajiban Masyarakat Dalam Pemeliharaan Kelestarian Lingkungan Hidup Melalui Pengelolaan Sampah Berbasis Masyarakat,” JLD, vol. 3, no. 2, pp. 121–134, Dec. 2022, doi: 10.23887/jld.v3i2.1609.
[4] N. S. Putri, N. S. Febriyanti, and S. A. Noor, “Efektivitas Kebijakan Daerah Kota Semarang dalam Mendukung Bank Sampah sebagai Instrumen Pengelolaan Sampah Berkelanjutan,” JISHUM, vol. 3, no. 4, pp. 635–648, Jun. 2025, doi: 10.57248/jishum.v3i4.611.
[5] Zen Munawar, Herru Soerjono, Rita Komalasari, Novianti Indah Putri, Milla Marlina Assegaf, and Mira Ismirani Fudsyi, “Pemanfaatan Pengelolaan Sampah Padat Berbasis IoT Untuk Kemandirian Desa,” darmaabdikarya, vol. 4, no. 1, pp. 39–53, Jun. 2025, doi: 10.38204/darmaabdikarya.v4i1.2462.
[6] J. Anggara, E. Ryansyah, and B. Arif Dermawan, “Implementasi Object Detection Dalam Klasifikasi Sampah Untuk Meningkatkan Efisiensi Pengelolaan Limbah,” jati, vol. 9, no. 3, pp. 4923–4930, May 2025, doi: 10.36040/jati.v9i3.13813.
[7] Head Of The Department Of Biophysics And Information Technologies Of Urgench Branch Of Tashkent Medical Academy, Uzbekistan et al., “Review And Analysis Of Computer Vision Algorithms,” tajas, vol. 03, no. 05, pp. 245–250, May 2021, doi: 10.37547/tajas/Volume03Issue05-39.
[8] D. Vieri, R. Susanto, E. S. Purwanto, and M. K. Ario, “Enhancing Waste Classification with YOLOv8 Models for Efficient and Accurate Sorting,” Procedia Computer Science, vol. 245, pp. 889–895, 2024, doi: 10.1016/j.procs.2024.10.316.
[9] R. T. Hutabarat and R. Kurniawan, “Deteksi Sampah di Permukaan Sungai menggunakan Convolutional Neural Network dengan Algoritma YOLOv8,” semnasoffstat, vol. 2024, no. 1, pp. 537–548, Nov. 2024, doi: 10.34123/semnasoffstat.v2024i1.2099.
[10] S. Kunwar and A. S. Alade, “Deep Learning in Waste Management: A Brief Survey,” Jul. 09, 2024. doi: 10.20944/preprints202407.0637.v1.
[11] M. A. A. Muzammil and R. Indraswari, “Pengembangan Arsitektur Model YOLOv8 untuk Meningkatkan Performa Object Detection pada Varian Boks Warehouse Palletizing,” ilkomnika, vol. 6, no. 2, pp. 19–30, Aug. 2024, doi: 10.28926/ilkomnika.v6i2.642.
[12]M. R. Ridha, S. Syafrijon, Y. Hendriyani, and A. Hadi, “Implementasi Model Yolov8 untuk Deteksi Jenis Sampah Organik dan Anorganik Berbasis Android,” aij, vol. 5, no. 1, pp. 419–426, Apr. 2025, doi: 10.59525/aij.v5i1.655.
[13]A. Nayfeh, S. Al-Azani, and H. Samma, “A Two-Stage YOLOv8 Approach for Waste Detection and Classification in Cognitive Cities,” Transportation Research Procedia, vol. 84, pp. 579–586, 2025, doi: 10.1016/j.trpro.2025.03.111.
[14]M. T. Okano, W. A. C. Lopes, S. M. Ruggero, O. Vendrametto, and J. C. L. Fernandes, “Edge AI for Industrial Visual Inspection: YOLOv8-Based Visual Conformity Detection Using Raspberry Pi,” 2025.
[15]R. Mysiuk, “Analysis Of Effective Image Processing Metrics On Raspberry Pi And Nvidia Jetson Nano,” ELIT, vol. 28, p. 774, 2024, doi: 10.30970/eli.28.2.
[16]Zamathula Queen Sikhakhane Nwokediegwu, Ejike David Ugwuanyi, Michael Ayorinde Dada, Michael Tega Majemite, and Alexander Obaigbena, “Ai-Driven Waste Management Systems: A Comparative Review Of Innovations In The Usa And Africa,” Eng. sci. technol. j., vol. 5, no. 2, pp. 507–516, Feb. 2024, doi: 10.51594/estj.v5i2.828.
[17]A. R. Sari, “Metode Penelitian Kualitatif, Kuantitatif, Dan R&D,” Jun. 2025.
[18]R. Sesiati, M. A. Febrian, and F. Firdaus, “Integrasi Sains Data Dan Rekayasa Perangkat Lunak: Pendekatan Holistik Dalam Pengembangan Aplikasi Pintar,” siskomti, vol. 7, no. 1, Apr. 2025, doi: 10.54342/7ept9v90.
[19]Oluwole Temidayo Modupe et al., “Reviewing The Transformational Impact Of Edge Computing On Real-Time Data Processing And Analytics,” Comput. sci. IT res. j., vol. 5, no. 3, pp. 693–702, Mar. 2024, doi: 10.51594/csitrj.v5i3.929.
[20]Syarif Husin, Iskandar Lutfi, and Masayu Anisah, “Pengujian Pengenalan Wajah Real-Time Dengan Dlib Pada RASPBERRY PI 5,” JURMIE, vol. 2, no. 6, pp. 254–269, Jun. 2025, doi: 10.71282/jurmie.v2i6.442.



