Analisis Prediktif Ketahanan Pangan Berbasis Data Spasial Dengan Metode Random Forest Dan Cellular Automata Di Provinsi Nusa Tenggara Timur

Authors

  • Yulia Shafira Butar-Butar Universitas Sumatera Utara
  • Opim Salim Sitompul Universitas Sumatera Utara
  • Amalia Amalia Universitas Sumatera Utara

DOI:

https://doi.org/10.30865/jurikom.v12i5.9234

Keywords:

Food Security, East Nusa Tenggara, Rice Prediction, Random Forest, Cellular Automata, Spatial Data

Abstract

Food security remains a key concern in sustainable development, especially in regions like East Nusa Tenggara (NTT) that are prone to drought and land conversion. This study aims to explore future food security in NTT by applying spatial data and predictive models to forecast conditions in 2030. Two main approaches were used: the Cellular Automata–Artificial Neural Network (CA–ANN) model to simulate land cover changes, and the Random Forest Regressor to predict rice productivity using environmental variables such as NDVI, land surface temperature, rainfall, elevation, and slope. The CA–ANN model showed strong spatial accuracy at 87.6%, with results indicating a decrease in cropland in several areas. The Random Forest model performed well with an R² of 0.90 and RMSE of 1.74, highlighting elevation and temperature as key drivers of productivity. By 2030, projections suggest a rice deficit of 221,000 tons, equivalent to more than 790 billion kilocalories. These findings underscore the urgency for local governments to adopt data-driven approaches when planning for sustainable food security in the years ahead.

References

[1] W. S. Murni and H. Purnama, “Pengembangan Pola Tanam Tanaman Pangan dengan Introduksi Teknologi Kalender Tanam (KATAM) Terpadu,” Prosiding Seminar Nasional Lahan Suboptimal ke-8 Tahun 2020, Oct. 2020.

[2] N. Anwar and U. Jenderal Soedirman Jl Profesor, “INDONESIA’S REGIONAL FOOD SECURITY IN LIGHT OF THE IMPENDING GLOBAL FOOD CRISIS,” Trikonomika, vol. 21, no. 2, pp. 101–110, 2022.

[3] M. Amin, L. Budiman, and D. Suhendi, “RESILIENSI PENGUATAN KETAHANAN PANGAN DAERAH DI INDONESIA,” Jurnal Perlindungan Masyarakat Bestuur Praesidium, vol. 01, no. 2, pp. 63–71, 2024.

[4] G. Milligan, G. Nica-Avram, J. Harvey, and J. Goulding, “Foodinsecurity.london: Developing a food-insecurity prevalence map for London - a machine learning from food-sharing footprints,” in International Journal of Population Data Science, Swansea University, 2024, p. 11. doi: 10.23889/ijpds.v9i4.2425.

[5] M. G. Leto Bele, E. Mustikawati, P. Hermanto, and F. Fitriani, “Pemodelan Geographically Weighted Regression pada Kasus Stunting di Provinsi Nusa Tenggara Timur Tahun 2020,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 2, pp. 179–191, 2022.

[6] K. P. Devkota, A. Bouasria, M. Devkota, and V. Nangia, “Predicting wheat yield gap and its determinants using remote sensing, machine learning, 2 and survey approaches in rainfed Mediterranean regions of Morocco 3 4.” [Online]. Available: https://ssrn.com/abstract=4732945

[7] R. Hidayat et al., “Implementasi Algoritma Random Forest Regression Untuk Memprediksi Penjualan Produksi di Supermarket,” SIMKOM, vol. 10, no. 1, pp. 101–109, Jan. 2025, doi: 10.51717/simkom.v10i1.703.

[8] R. Arisandi, “PERBANDINGAN MODEL KLASIFIKASI RANDOM FOREST DENGAN RESAMPLING DAN TANPA RESAMPLING PADA PASIEN PENDERITA GAGAL JANTUNG,” Jurnal Gaussian, vol. 12, no. 1, pp. 136–145, May 2023, doi: 10.14710/j.gauss.12.1.136-145.

[9] B. Rizqi and M. D. M. Manessa, “TINJAUAN SISTEMATIS PRISMA: KONVERSI SAWAH MENGANCAM NERACA KETERSEDIAAN BERAS DI SUATU WILAYAH,” Jurnal Tanah dan Sumberdaya Lahan, vol. 12, no. 2, pp. 333–346, Jul. 2025, doi: 10.21776/ub.jtsl.2025.012.2.11.

[10] B. Janga, G. P. Asamani, Z. Sun, and N. Cristea, “A Review of Practical AI for Remote Sensing in Earth Sciences,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs15164112.

[11] W. Setiawan, A. Habibi, A. R. Setiawan, C. Nathanael, N. Silvia, and A. Wahyudi, “Analisis Proyeksi Penggunaan Lahan Sawah untuk Kebutuhan dan Ketersediaan Beras di Kabupaten Jember Tahun 2032,” Tunas Agraria, vol. 8, no. 2, pp. 219–235, May 2025, doi: 10.31292/jta.v8i2.440.

[12] G. Mutiara Ayuningtias, T. Istanabi, and E. F. Rini, “Prediksi Perubahan Penggunaan Lahan pada Kawasan Pertanian Pangan Berkelanjutan di Suburban Selatan Kota Surakarta Menggunakan Pemodelan Spasial,” Desa-Kota: Jurnal Perencanaan Wilayah, Kota, dan Permukiman, vol. 7, no. 1, pp. 175–187, 2025, doi: 10.20961/desa-kota.v7i1.91166.175-187.

[13] S. Fadhilatun Nashriyah, M. Rahmaniati Makful, and Y. Puspita Devi, “GAMBARAN SPASIAL HUBUNGAN ANTARA FAKTOR LINGKUNGAN DAN EKONOMI DENGAN STUNTING BALITA DI PROVINSI NUSA TENGGARA TIMUR.” [Online]. Available: https://portalpk21.bkkbn.go.id/laporan/tabulasi

[14] H. Laksamana and E. Kurniati, “Analisis Faktor-Faktor yang Mempengaruhi Produksi Padi Petani Desa Sungai Solok Kecamatan Kuala Kampar Kabupaten Pelalawan,” AgriHumanis: Journal of Agriculture and Human Resource Development Studies, vol. 3, no. 1, pp. 21–30, Apr. 2022, doi: 10.46575/agrihumanis.v3i1.133.

[15] R. Virtriana et al., “Development of Spatial Model for Food Security Prediction Using Remote Sensing Data in West Java, Indonesia,” ISPRS Int J Geoinf, vol. 11, no. 5, May 2022, doi: 10.3390/ijgi11050284.

[16] Y. Ngongo, N. Kotta, and P. R. Matitaputty, “Strengthening Archipelago Food Security and Food Sovereignty in ENT-Indonesia,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Jul. 2021. doi: 10.1088/1755-1315/803/1/012032.

[17] M. Puspitasari, D. Akhmad, M. Peneliti, B. Pengkajian, T. Pertanian, and K. Barat, “ANALISIS FAKTOR YANG MEMENGARUHI PRODUKTIVITAS PADI DI KABUPATEN SAMBAS KALIMANTAN BARAT ANALYSIS OF FACTORS AFFECTING RICE PRODUCTIVITY IN SAMBAS DISTRICT, WEST KALIMANTAN,” Jurnal Pertanian Agros, vol. 22, no. 2, 2020.

[18] I. Y. Safitri, M. A. Tiro, and Ruliana, “Spatial Regression Analysis to See Factors Affecting Food Security at District Level in South Sulawesi Province,” ARRUS Journal of Mathematics and Applied Science, vol. 2, no. 2, pp. 60–72, Mar. 2022, doi: 10.35877/mathscience740.

[19] T. Sarastika, Yusuf Susena, and Dwi Kurniawan, “PREDIKSI KONVERSI LAHAN PERTANIAN BERBASIS ARTIFICIAL NEURAL NETWORK-CELLULAR AUTOMATA (ANN-CA) DI KAWASAN SLEMAN BARAT,” Jurnal Tanah dan Sumberdaya Lahan, vol. 10, no. 2, pp. 471–482, Jul. 2023, doi: 10.21776/ub.jtsl.2023.010.2.30.

[20] N. Chamidah et al., “Spatial Modeling of Food Security Index in Central Java Using Mixed Geographically Weighted Regression,” ZERO: Jurnal Sains, Matematika dan Terapan, vol. 9, no. 1, p. 247, Jul. 2025, doi: 10.30829/zero.v9i1.25044.

Additional Files

Published

2025-10-31

How to Cite

Butar-Butar, Y. S., Opim Salim Sitompul, & Amalia Amalia. (2025). Analisis Prediktif Ketahanan Pangan Berbasis Data Spasial Dengan Metode Random Forest Dan Cellular Automata Di Provinsi Nusa Tenggara Timur . JURNAL RISET KOMPUTER (JURIKOM), 12(5), 772–787. https://doi.org/10.30865/jurikom.v12i5.9234