Pemetaan Kepribadian RIASEC melalui Klasifikasi Multi-Task Fitur Grafologi Tulisan Tangan Menggunakan ResNeXt50

Authors

  • Abdullah Hanif Arif Universitas Sriwijaya, Palembang
  • Samsuryadi Universitas Sriwijaya, Palembang

DOI:

https://doi.org/10.30865/jurikom.v12i6.9201

Keywords:

Graphology, Holland Personality (RIASEC), Handwriting Analysis, CNN, ResNeXt50, Multi-Task Learning

Abstract

Personality analysis based on graphology—the study of handwriting characteristics to identify individual personality traits—is an approach that has been increasingly developed in the fields of psychometrics and artificial intelligence. This research proposes a method for mapping Holland’s personality types (RIASEC) through graphology-based handwriting analysis using a deep learning approach. Conventional personality assessments generally rely on self-assessment questionnaires, which are highly subjective. To address this limitation, this study develops a Convolutional Neural Network (CNN) model with a ResNeXt50 architecture based on multi-task learning to classify five graphological features: letter size, writing slant, word spacing, line spacing, and pen pressure. The dataset used in this study was obtained from the IAM Handwriting Database, consisting of 1,533 handwriting images. The data underwent preprocessing steps—including resizing, conversion to tensor format, and normalization—before being trained using a multi-head CNN model with cross-entropy loss for each graphological feature and the Adam optimizer for optimization. After the training process, the model was evaluated using a testing set that had never been used during the training or validation stages to objectively assess its generalization capability. The evaluation results indicate that the proposed model can classify graphological features with an average accuracy above 80% and map the classification results to RIASEC personality types with up to three dominant types. These findings indicate that the ResNeXt50-based multi-task learning approach has the potential to serve as a more objective, efficient, and applicable alternative method for personality assessment in the contexts of career development and education.

References

[1] J. L. Holland, Making vocational choices: A theory of vocational personalities and work environments, 3rd ed. Odessa, FL, US: Psychological Assessment Resources, 1997.

[2] N. N. I. P. Wistarini dan D. Syarifah, “Holland’s RIASEC Model: Asesmen Pengembangan Karier dan Kerja pada Pegawai PT Y,” Bisma J. Manaj., vol. 9, no. 3, hal. 300–309, 2024, doi: 10.23887/bjm.v9i3.61603.

[3] D. Nuradhari, N. K. Azzahra, P. Fadmala, W. Karisa, M. Subhan, dan N. H. Shui, “Peran Teori Holland dalam Mengarahkan Pilihan Karir Bedasarkan Versi Kepribadian,” J. Pendidik. Tambusai, vol. 9, hal. 1438–1442, 2025.

[4] R. Kurniawan dkk., “Pemetaan Minat dan Bakat Menggunakan Metode RIASEC Pendukung Implementasi Kurikulum Merdeka di SMAN 9 Bandarlampung,” J. Pengabdi. Masy. Bangsa, vol. 1, no. 9, hal. 1748–1755, 2023, doi: 10.59837/jpmba.v1i9.417.

[5] E. Yunika dan A. R. Musslifah, “Pemanfaatan Grafologi sebagai Media Pengenalan Diri dan Peningkatan Kepercayaan Diri pada Mahasiswa Psikologi Universitas Sahid Surakarta,” Aspir. Publ. Has. Pengabdi. dan Kegiat. Masy., vol. 3, hal. 118–126, 2025, [Daring]. Tersedia pada: https://journal.aspirasi.or.id/index.php/ASPIRASI

[6] Y. V. Guntara, Samsuryadi, dan Sukemi, “Pengenalan Kepribadian Melalui Tulisan Tangan Menggunakan Convulutional Neural Network Dengan LS Classifiers,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 14, no. 2, hal. 151–167, 2023, doi: 10.31849/digitalzone.v14i2.15193.

[7] A. R. Pathak, A. Raut, S. Pawar, M. Nangare, H. S. Abbott, dan P. Chandak, “Personality analysis through handwriting recognition,” J. Discret. Math. Sci. Cryptogr., vol. 23, no. 1, hal. 19–33, 2020, doi: 10.1080/09720529.2020.1721856.

[8] D. Gagiu dan D. Sendrescu, “Detection of Personality Traits Using Handwriting and Deep Learning,” Appl. Sci., vol. 15, no. 4, 2025, doi: 10.3390/app15042154.

[9] R. P. Archana, S. M. Anzar, dan N. P. Subheesh, “Design and Development of the Graphology-based Career Analysis and Prediction System (G-CAPS) for Engineering Students,” in IEEE Global Engineering Education Conference, EDUCON, IEEE Computer Society, 2023. doi: 10.1109/EDUCON54358.2023.10125277.

[10] Y. Zhang dan Q. Yang, “An overview of multi-task learning,” Natl. Sci. Rev., vol. 5, no. 1, hal. 30–43, 2018, doi: 10.1093/nsr/nwx105.

[11] D. Avianto, A. Harjoko, dan Afiahayati, “Multi-Task Convolutional Neural Network untuk Klasifikasi Fine-Grained Kendaraan Menggunakan Citra Dashboard Camera,” Univ. Gadjah Mada, 2023, [Daring]. Tersedia pada: http://etd.repository.ugm.ac.id/

[12] S. Xie, R. Girshick, P. Dollár, Z. Tu, dan K. He, “Aggregated residual transformations for deep neural networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, hal. 5987–5995, 2017, doi: 10.1109/CVPR.2017.634.

[13] S. Kornblith, J. Shlens, dan Q. V Le Google Brain, Do Better ImageNet Models Transfer Better? 2019.

[14] G. Chaubey dan S. K. Arjaria, Personality Prediction Through Handwriting Analysis Using Convolutional Neural Networks. Springer Singapore, 2022. doi: 10.1007/978-981-16-3802-2_5.

[15] U.-V. Marti dan H. Bunke, “IAM Handwritten Forms Dataset.” Diakses: 20 Oktober 2025. [Daring]. Tersedia pada: https://www.kaggle.com/datasets/naderabdalghani/iam-handwritten-forms-dataset?select=data

[16] “resnext50_32x4d — Torchvision main documentation.” Diakses: 20 Oktober 2025. [Daring]. Tersedia pada: https://docs.pytorch.org/vision/main/models/generated/torchvision.models.resnext50_32x4d.html

[17] D. Anggara, N. Suarna, dan Y. Arie Wijaya, “Performance Comparison Analysis Of Optimizer Adam, SGD, And RMSPROP On The H5 Model,” J. Ilm. NERO, vol. 8, no. 1, hal. 53–64, 2023.

[18] Z. Karimi, Confusion Matrix, no. October. 2021. doi: 10.1007/978-1-4899-7687-1_50.

[19] R. Hidayatulloh, W. Aji, dan E. Prabowo, “Analisis Performansi Model Machine Learning dalam Klasifikasi Penyakit Diabetes Tipe 2,” JURIKOM (Jurnal Ris. Komputer), vol. 12, no. 4, 2025, doi: 10.30865/jurikom.v12i4.8747.

[20] Siswanto, Menyingkap Kepribadian Lewat Tulisan Tangan, I. Jakarta, 2010. [Daring]. Tersedia pada: www.bpkgm.com

[21] Abdurahman dan B. Yulianto, “Hubungan Antara Karakteristik Tulisan Tangan dengan Perilaku pada Siswa Kelas X SMKN 10 Surabaya,” Bapala UNESA, vol. 9, no. 8, hal. 173–182, 2022.

[22] A. Carolina dan Lina, “SISTEM PENJUALAN DENGAN PENGENALAN PRODUK SECARA OTOMATIS MENGGUNAKAN METODE YOLO,” J. Sist. Inf. DAN Tek. Komput., vol. 8, no. 2, hal. 271–275, 2023.

Additional Files

Published

2025-12-15

How to Cite

Hanif Arif, A., & Samsuryadi. (2025). Pemetaan Kepribadian RIASEC melalui Klasifikasi Multi-Task Fitur Grafologi Tulisan Tangan Menggunakan ResNeXt50. JURNAL RISET KOMPUTER (JURIKOM), 12(6), 805–814. https://doi.org/10.30865/jurikom.v12i6.9201