Penerapan Knowledge Discovery dalam Perbandingan Kinerja LSTM, Random Forest, dan SVR untuk Peramalan Harga Beras Provinsi Sumatera Selatan
DOI:
https://doi.org/10.30865/jurikom.v12i5.9140Keywords:
Long Short Term Memory, Random Forest, Support Vector Regression, Rice PriceAbstract
Rice is a primary staple food in Indonesia, particularly in South Sumatra Province. In February 2024, BBC News Indonesia reported that the price of premium rice surged to Rp18,000 per kilogram, marking the highest price in the country’s history. To anticipate and predict similar spikes in the future, this study applies a Knowledge Discovery approach and compares three machine learning models: LSTM, Random Forest, and SVR. The approach follows the stages of data selection, cleaning, transformation, modeling, and evaluation to uncover hidden patterns in historical data. The dataset, obtained from the official PIHPS Nasional website, consists of 1,412 daily rice price records from January 2020 to May 2025. Model performance was evaluated using MAPE, MAE, and RMSE metrics. The findings indicate that the SVR model outperformed LSTM and Random Forest, delivering the most accurate results. For the Super Quality II rice category, SVR achieved a MAPE of 0.00 percent, MAE of 40.93, and RMSE of 52.54. SVR also consistently produced the lowest prediction errors in other categories, such as Low Quality I (MAE 59.39) and Medium Quality I (MAE 38.92). This research is expected to serve as a foundation for developing machine learning–based food price monitoring systems to support more responsive policies and maintain rice price stability in the future.
References
REFERENCES
[1] M. I. Syairozi, “ANALISIS KEMISKINAN DI SEKTOR PERTANIAN (Studi Kasus Komoditas Padi di Kabupaten Malang),” Media Ekonomi, vol. 28, no. 2, pp. 113–128, May 2021, doi: 10.25105/me.v28i2.7169.
[2] Solikhun and T. Yunita, “Quantum Perceptron: A New Approach for Predicting Rice Prices at the Indonesian Wholesale Trade Level,” Jurnal RESTI, vol. 8, no. 4, pp. 479–485, Aug. 2024, doi: 10.29207/resti.v8i4.5869.
[3] A. Muñoz-Villamizar, M. Piatti, C. Mejía-Argueta, L. F. Pirabe, J. Namdar, and J. F. Gomez, “Navigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basket,” Journal of Retailing and Consumer Services, vol. 79, Jul. 2024, doi: 10.1016/j.jretconser.2024.103875.
[4] S. Asrin, T. Andita Putri, and A. D. Utami, “Transmisi Harga Beras di Indonesia Pada Masa Pandemi Covid-19,” Jurnal Agribisnis Indonesia, vol. 10, no. 1, pp. 159–168, Jun. 2022, doi: 10.29244/jai.2022.10.1.159-168.
[5] R. Ikhwan and S. Suharyo, “Resiliensi Petani Wanita Kepala Keluarga Menghadapi Krisis Pangan,” Forum Penelitian Agro Ekonomi, vol. 41, no. 1, Jul. 2023.
[6] R. Hidayat and I. Wibisonya, “Rice Price Prediction with Long Short-Term Memory (LSTM) Neural Network,” Jurnal RESTI, vol. 8, no. 5, pp. 658–664, Oct. 2024, doi: 10.29207/resti.v8i5.6041.
[7] R. Nurfalah, Dwiza Riana, and Anton, “Identifikasi Citra Beras Menggunakan Algoritma Multi-SVM Dan Neural Network Pada Segmentasi K-Means,” Jurnal RESTI, vol. 5, no. 1, pp. 55–62, Feb. 2021, doi: 10.29207/resti.v5i1.2721.
[8] A. Wijaya and S. O. Kunang, “Implementasi Metode Least Square Pada Sistem Forecasting Harga Bahan Pokok Di Unit Pasar Tradisional Kota Palembang,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 1, pp. 291–301, Feb. 2023, doi: 10.29100/jipi.v8i1.3442.
[9] A. A. Suyono, K. Kusrini, and M. R. Arief, “Prediksi Indeks Harga Konsumen Komoditas Makanan di Kota Surabaya menggunakan Support Vector Regression,” METIK JURNAL, vol. 6, no. 1, pp. 45–51, Jul. 2022, doi: 10.47002/metik.v6i1.339.
[10] I. Mardianto, M. Ichsan Gunawan, D. Sugiarto, and A. Rochman, “Perbandingan Peramalan Harga Beras Menggunakan Metode ARIMA pada Amazon Forecast dan Sagemaker,” Jurnal RESTI, vol. 4, no. 3, pp. 537–543, Jun. 2020, doi: 10.29207/resti.v4i3.1902.
[11] L. Domingo, M. Grande, F. Borondo, and J. Borondo, “Anticipating food price crises by reservoir computing,” Chaos Solitons Fractals, vol. 174, Sep. 2023, doi: 10.1016/j.chaos.2023.113854.
[12] M. Nilashi et al., “Knowledge discovery for course choice decision in Massive Open Online Courses using machine learning approaches,” Expert Syst Appl, vol. 199, Aug. 2022, doi: 10.1016/j.eswa.2022.117092.
[13] H. Azis, P. Purnawansyah, N. Nirwana, and F. A. Dwiyanto, “The Support Vector Regression Method Performance Analysis in Predicting National Staple Commodity Prices,” ILKOM Jurnal Ilmiah, vol. 15, no. 2, pp. 390–397, Aug. 2023, doi: 10.33096/ilkom.v15i2.1686.390-397.
[14] R. Febiyane, Y. H. Chrisnanto, and G. Abdillah, “Implementasi Metode Recurrent Neural Network Untuk Prediksi Kejang Pada Penderita Epilepsi Berdasarkan Data Electroenephalogram,” JURIKOM (Jurnal Riset Komputer), vol. 12, no. 3, pp. 394–402, Jun. 2025, doi: 10.30865/jurikom.v12i3.8656.
[15] S. Sen, D. Sugiarto, and A. Rochman, “Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras,” ULTIMATICS, vol. XII, no. 1, p. 35, 2020.
[16] T. Prasetyo, R. A. Putri, D. Ramadhani, Y. Angraini, and K. A. Notodiputro, “Perbandingan Kinerja Metode Arima, Multi-Layer Perceptron, dan Random Forest dalam Peramalan Harga Logam Mulia Berjangka yang Mengandung Pencilan,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 2, pp. 265–274, Apr. 2024, doi: 10.25126/jtiik.20241127392.
[17] X. Shu and Y. Ye, “Knowledge Discovery: Methods from data mining and machine learning,” Soc Sci Res, vol. 110, Feb. 2023, doi: 10.1016/j.ssresearch.2022.102817.
[18] V. Novalia, K. Ditha Tania, A. Meiriza, and A. Wedhasmara, “Knowledge Discovery of Application Review Using Word Embedding’s Comparison with CNN-LSTM Model on Sentiment Analysis,” 2024 International Conference on Electrical Engineering and Computer Science (ICECOS), IEEE, Sep. 2024, doi: 10.1109/ICECOS63900.2024.10791113.
[19] Ainurrochman, D. P. Adi, and A. B. Gumelar, “Deteksi Emosi Wicara pada Media On-Demand menggunakan SVM dan LSTM ,” Jurnal RESTI, vol. 4, no. 5, Oct. 2020, doi: 10.29207/resti.v4i5.2073.
[20] A. Sujjada and F. Sembiring, “Prediksi Harga Bitcoin Menggunakan Algoritma Long ShortTerm Memory,” Jurnal INOVTEK Polbeng Seri Informatika, vol. 9, no. 1, p. 2024, Nov. 2024.
[21] A. Firmansyah, M. F. Syahidin, and Y. S. Triana, “Prediksi Kebakaran Hutan Berdasarkan Titik Panas dan Iklim Menggunakan Algoritma Random Forest,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 10, no. 2, pp. 145–155, Sep. 2024, doi: 10.25077/TEKNOSI.v10i2.2024.145-155.
[22] A. Gumilang and S. Agustin, “Deteksi Kepribadian Melalui Margin Pada Tulisan Tangan Menggunakan Random Forest,” Jurnal INOVTEK Polbeng Seri Informatika, vol. 9, no. 1, p. 2024, Nov. 2024.
[23] L. N. Hapsari and N. Rokhman, “Anomaly Detection of Hospital Claim Using Support Vector Regression,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 18, no. 1, p. 1, Jan. 2024, doi: 10.22146/ijccs.91857.
[24] Z. Liao, S. Dai, and T. Kuosmanen, “Convex support vector regression,” Eur J Oper Res, vol. 313, no. 3, pp. 858–870, Mar. 2024, doi: 10.1016/j.ejor.2023.05.009.
[25] D. Hendri, I. Permana, F. Nur Salisah, M. Afdal, M. Megawati, and E. Saputra, “Perbandingan Performa Algoritma SVR, LSTM, dan SARIMA dalam Peramalan Produksi Kelapa Sawit,” Technology and Science (BITS), vol. 7, no. 1, 2025, doi: 10.47065/bits.v7i1.7170.
[26] I. Maulita and A. M. Wahid, “Prediksi Magnitudo Gempa Menggunakan Random Forest, Support Vector Regression, XGBoost, LightGBM, dan Multi-Layer Perceptron Berdasarkan Data Kedalaman dan Geolokasi,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 4, no. 5, pp. 221–232, Dec. 2024, doi: 10.52436/1.jpti.470.
[27] Z. A. Frakusya, R. H. Virgianto, and M. E. Yuggotomo, “Estimasi Konsentrasi PM10 Menggunakan Support Vector Regression,” JRST (Jurnal Riset Sains dan Teknologi), vol. 6, no. 1, p. 1, Nov. 2022, doi: 10.30595/jrst.v6i1.8977.



