Public Opinion Sentiment Analysis of the Brain Drain Phenomenon on Social Media X Using the Naive Bayes Classifier Algorithm

Authors

  • Risma Hidayati Universitas Islam Negeri Sumatera Utara
  • Abdul Halim Hasugian Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.30865/jurikom.v12i5.9131

Keywords:

Brain Drain, Sentiment Analysis, X Social Media, Naive Bayes Classifier, TF-IDF

Abstract

The brain drain phenomenon is an important issue in Indonesia due to the increasing number of young professionals choosing to work abroad, which reduces the quality of human resources within the country. This study aims to analyze public opinion toward the brain drain phenomenon through the X (Twitter) social media platform and classify public sentiment using the Naive Bayes Classifier algorithm. Data were collected through a web crawling process within the last two years, resulting in 1,170 relevant Indonesian-language tweets. The preprocessing stage included cleaning, case folding, tokenizing, normalization, stopword removal, and stemming to produce clean and structured data. Word weighting was performed using the Term Frequency–Inverse Document Frequency (TF-IDF) method to measure the significance of each term. The findings show that public opinion is divided into two main sentiments: positive and negative. Positive sentiment reflects the perception that working abroad offers career advancement and experience, while negative sentiment expresses concern about the loss of skilled human resources. The classification model achieved a high level of accuracy in categorizing sentiment data. This research contributes to understanding public perceptions and provides a foundation for developing strategic policies to address the brain drain issue in Indonesia

References

[1] I. P. Sari, N. F. Al-Phasa, A. I. Muhammad, R. A. Feriansyah, M. Rifqi, and M. Z. Zulfika, “Ketika Talenta Pergi: Menelisik Dampak Brain Drain Terhadap Kemajuan Indonesia,” Arini: Jurnal Ilmiah dan Karya Inovasi Guru, vol. 2, no. 1, pp. 99–111, Jun. 2025, doi: 10.71153/arini.v2i1.344.

[2] V. Erlisya, Aisyah Aulia, Ferik Clodya, Nursyidah, and Wahjoe Pangestoeti, “FENOMENA #KABURAJADULU: ANALISIS DAMPAK BRAIN DRAIN TERHADAP PEREKONOMIAN INDONESIA,” JURNAL ILMIAH EKONOMI DAN MANAJEMEN, vol. 3, no. 6, pp. 171–177, Jun. 2025, doi: 10.61722/jiem.v3i6.5083.

[3] M. Sholeh, “Data Jumlah Pengangguran Terbuka di Indonesia Berdasarkan Pendidikan Terakhir Tahun 2024.” [Online]. Available: https://data.goodstats.id/statistic/data-jumlah-pengangguran-terbuka-di-indonesia-berdasarkan-pendidikan-terakhir-tahun-2024-zYgTu

[4] K. D. Nathania, “Ramai Tagar Kabur Aja Dulu, Pakar UGM: Bentuk Sikap Kritis dan Sindiran Anak Muda atas Situasi di Tanah Air,” Gusti Grehenson. Accessed: Feb. 20, 2025. [Online]. Available: https://ugm.ac.id/id/berita/ramai-tagar-kabur-aja-dulu-pakar-ugm-bentuk-sikap-kritis-dan-sindiran-anak-muda-atas-situasi-di-tanah-air/

[5] C. N. Harjadi, “Fenomena Brain Drain: Keputusan Migran Berpendidikan Tinggi Tinggalkan Negara Asal,” GoodStats. Accessed: Apr. 23, 2024. [Online]. Available: https://goodstats.id/article/tren-brain-drain-keputusan-migran-berpendidikan-tinggi-meninggalkan-negara-asal-UJkF8

[6] L. Uliana, A. Desmi, L. A. Widari, Y. Afrillia, and Fadlisyah, “Analisis Sentimen Terhadap Islamophobia Di Twitter Menggunakan Algoritma Decision Tree C4.5,” Jurnal Teknologi Terapan & Sains 4.0, vol. 2, no. 1, pp. 26–27, 2023.

[7] Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 115–122, 2023, doi: DOI : https://doi.org/10.55338/saintek.v4i3.1368.

[8] F. Muslihatinningsih, Zainuri, and E. Santoso, “Brain Drain Indonesia Dan Dampaknya Bagi Indonesia,” JAE: JURNAL AKUNTANSI DAN EKONOMI, vol. 7, no. 1, pp. 42–52, 2022, doi: DOI: 10.29407/jae.v7i1.17702.

[9] M. D. S. Mustika and N. N. Yuliarmi, “The Determinants of The Brain Drain Phenomenon in Educational Migration Activities,” JEKT JURNAL EKONOMI KUANTITATIF TERAPAN, vol. 17, no. 1, pp. 76–89, 2024.

[10] M. R. Fajriansyah and M. M. Ir Siswanto, “Analisis Sentimen Pengguna Twitter Terhadap Partai Politik Pendukung Calon Gubernur Di Jakarta Menggunakan Algoritma C4.5 Decision Tree Learning,” SKANIKA, vol. 1, no. 2, pp. 697–703, 2020.

[11] B. A. Maulana, M. J. Fahmi, A. M. Imran, and N. Hidayati, “Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 375–384, Feb. 2024, doi: 10.57152/malcom.v4i2.1206.

[12] M. Muharrom, “Analisis Komparasi Algoritma Data Mining Naive Bayes, K-Nearest Neighbors dan Regresi Linier Dalam Prediksi Harga Emas,” Bulletin of Information Technology (BIT), vol. 4, no. 4, pp. 430–438, 2023, doi: 10.47065/bit.v3i1.

[13] M. Audina Rambe, I. Komputer, S. dan Teknologi, and U. Islam Negeri Sumatera Utara, “Analisis Sentimen Pengguna Aplikasi Dana Menggunakan Metode Naïve Bayes,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 4, no. 2, 2024.

[14] Yulindawati, S. Lailiyah, and A. Yusnita, “REKOMENDASI PEMILIHAN JUDUL TUGAS AKHIR MENGGUNAKAN METODE NAÏVE BAYES,” Journal of Information System Management (JOISM) e-ISSN, vol. 5, no. 2, pp. 2715–3088, 2024, doi: 10.24076/joism.2024v5i2.1383.

[15] M. Asfi and N. Fitrianingsih, “Implementasi Algoritma Naive Bayes Classifier sebagai Sistem Rekomendasi Pembimbing Skripsi,” InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan, vol. 5, no. 1, pp. 45–50, 2020, doi: 10.30743/infotekjar.v5i1.2536.

[16] F. Azmi, M. K. Gibran, I. Fawwaz, R. Anugrahwaty, and A. Saleh, “Intelligent Actuator Control in Smart Agriculture through Machine Learning and Sensor Data Integration,” ZERO J. Sains, Mat. dan Terap., vol. 9, no. 1, pp. 150–161, 2025, doi: http://dx.doi.org/10.30829/zero.v9i1.24421.

[17] J. Kristovani Siagian, “ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP RENCANA KENAIKAN PPN MENJADI 12% DI MEDIA SOSIAL X DENGAN METODE NAÏVE BAYES,” 5th Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), vol. 3, no. 2, 2024.

[18] M. R. B. Keliat and M. Ikhsan, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes pada Klasifikasi Jenis Buah Kurma berdasarkan Citra Hue Saturation Value,” Sistemasi: Jurnal Sistem Informasi, vol. 14, no. 1, pp. 2540–9719, 2025, doi: 10.18495/generic.v14i1.122.

[19] M. K. Gibran, M. I. Rifki, A. H. Hasugian, A. T. A. A. Siahaan, A. Sahputra, and R. Ong, “Sentiment Analysis of Platform X Users on Starlink Using Naive Bayes,” Instal J. Komput., vol. 16, no. 03, pp. 210–220, 2024, doi: https://doi.org/10.54209/jurnalinstall.v16i03.240.

[20] Darmastyo Bagas Prabowo, “PREDIKSI HASIL PERTANDINGAN SEPAKBOLA ENGLISH PREMIER LEAGUE DENGAN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS DAN NAÏVE BAYES CLASSIFIER,” Universitas Islam Indonesia Yogyakarta, Yogyakarta, 2020.

Additional Files

Published

2025-10-31

How to Cite

Hidayati, R., & Hasugian, A. H. (2025). Public Opinion Sentiment Analysis of the Brain Drain Phenomenon on Social Media X Using the Naive Bayes Classifier Algorithm. JURNAL RISET KOMPUTER (JURIKOM), 12(5), 743–755. https://doi.org/10.30865/jurikom.v12i5.9131