Analisis Sentimen Terhadap Kinerja Wakil Presiden Pada Tahun 2025 Menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.30865/jurikom.v12i4.9021Keywords:
Sentiment Analysis, Social Media, Support Vector Machine, TF-IDF, Vice PresidentAbstract
This study examines public perception of the performance of Indonesia’s Vice President in 2025 by utilizing opinion data from social media X/Twitter. The research addresses the lack of up-to-date quantitative insights into public sentiment polarity following the inauguration, particularly regarding Gibran Rakabuming Raka, whose appointment has sparked mixed reactions. The objective of this study is to classify sentiments as positive or negative and to evaluate the performance of the classification model on a corpus of user posts. The dataset consists of 898 tweets collected using the hashtags #wapres, #Gibran, and #WapresGibran. Data processing involved cleaning the text, converting all characters to lowercase (case folding), tokenization, normalization, removal of stopwords, and stemming. Feature representation was carried out using Term Frequency–Inverse Document Frequency (TF-IDF), while modeling was performed with the Support Vector Machine (SVM) algorithm. Results show 647 tweets with positive sentiment and 251 tweets with negative sentiment, indicating a generally positive tendency while maintaining some diversity of opinion. The SVM model achieved an accuracy of 80.68%, demonstrating reliable performance on high-dimensional textual data. These findings provide a concise overview of public opinion that can serve as a reference for policymakers and government communication strategies. The study’s main contribution lies in offering empirical evidence from social media on sentiment dynamics toward the Vice President’s performance, while also highlighting the effectiveness of combining TF-IDF and SVM in contemporary political sentiment analysis.
References
M. Farhan and U. N. Huda, “Jurnal Hukum Legalita Analisis Respon Negatif Publik terhadap Putusan MK Nomor,” vol. 6, 2024.
Dinda Aurellia and K. Katimin, “Arah Baru Politik di Era Digital (Perspektif Generasi Milenial di Media Sosial),” SOSMANIORA J. Ilmu Sos. dan Hum., vol. 4, no. 2, pp. 231–236, 2025, doi: 10.55123/sosmaniora.v4i2.5149.
N. Aykar and Muhammad Arfan Ahwadzy, “Batas Usia Capres-Cawapres Dalam Keputusan MK No. 90/PUU-XXI/2023 Dan Implikasinya Terhadap Dinasti Politik Perspektif Fikih,” Syariah J. Fiqh Stud., vol. 2, no. 2, pp. 21–46, 2024, doi: 10.61570/syariah.v2i2.79.
S. Suhendra and F. Selly Pratiwi, “Peran Komunikasi Digital dalam Pembentukan Opini Publik: Studi Kasus Media Sosial,” Iapa Proc. Conf., p. 293, 2024, doi: 10.30589/proceedings.2024.1059.
Junaedi, A. Hendra Gunawan, V. Kuswanto, and Jonathan, “Tinjauan Support Vector Machine dalam Text-Mining untuk Analisis Sentimen di Sektor Pariwisata,” bit-Tech, vol. 7, no. 2, pp. 323–330, 2024, doi: 10.32877/bt.v7i2.1810.
V. Agustina and A. Herliana, “Analisis Sentimen Publik atas Kebijakan Efisiensi Anggaran 2025 dengan Text Mining dan Natural Language Processing,” J. Media Inform., vol. 6, no. 3, pp. 2182–2194, 2025, [Online]. Available: https://ejournal.sisfokomtek.org/index.php/jumin/article/view/6301
J. K. Nainggolan, F. Sinaga, A. M. Sitorus, A. Khairia, and B. A. Wijaya, “Feature Selection using / for T ransductive S upport V ector M achine,” Science (80-. )., vol. 4, no. 1, pp. 62–70, 2015.
R. Muhammad Nusantara, “Analisis Sentimen Masyarakat terhadap Pelayanan Bank Central Asia: Text Mining Cuitan Satpam BCA pada Twitter,” Co-Value J. Ekon. Kop. dan kewirausahaan, vol. 15, no. 9, 2025, doi: 10.59188/covalue.v15i9.5099.
A. K. Ginting, D. Purba, L. M. Sinaga, and M. Sagala, “Analisis Sentimen Masyarakat Twitter terhadap Emas Digital Menggunakan Algoritma Naïve Bayes,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komput., vol. 07, no. 01, pp. 8–14, 2025.
A. Fauzi and A. H. Yunial, “Analisis Sentimen Pada Media Sosial Menggunakan Perbandingan Algoritma Data Mining,” J. Edukasi dan Penelit. Inform., vol. 10, no. 2, p. 277, 2024, doi: 10.26418/jp.v10i2.76024.
H. Y. Pradana, I. Slamet, and E. Zukhronah, “Analisis Sentimen Kinerja Pemerintahan Menggunakan Algoritma Nbc, Knn, Dan Svm,” Pros. Simp. Nas. Multidisiplin, vol. 4, p. 114, 2023, doi: 10.31000/sinamu.v4i1.7869.
L. N. Haq and A. Mulyani, “Analisis Sentimen Aplikasi Jakone Mobile Pada Google Play Store Menggunakan Metode Support Vector Machine,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 1, pp. 1–9, 2025, [Online]. Available: https://repository.nusamandiri.ac.id/repo/files/254376/download/file_10.pdf
Danis Rifa Nurqotimah, A. Naseh Khudori, and R. Siwi Pradini, “Implementasi Algoritma Support Vector Machine (SVM) Untuk Klasifikasi Penyakit Stroke,” J. Appl. Comput. Sci. Technol., vol. 5, no. 2, p. press, 2024, doi: 10.52158/jacost.v5i2.817.
M. N. Ichsan, M. Ayu, D. Widyadara, and U. Mahdiyah, “P emanfaatan Support Vector Machine dalam Mendeteksi Biji Kopi,” vol. 9, pp. 1024–1033.
J. E. Br Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” J. Manaj. Inform., vol. 14, no. 1, pp. 42–53, 2024, doi: 10.34010/jamika.v14i1.11946.
I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.
Z. Purwanti and Sugiyono, “Pemodelan Text Mining untuk Analisis Sentimen Terhadap Program Makan Siang Gratis di Media Sosial X Menggunakan Algoritma Support Vector Machine (SVM),” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 3, pp. 3065–3079, 2024, doi: 10.35870/jimik.v5i3.1001.
I. Zufria, A. H. Lubis, S. S. Febiyaula, U. Islam, and N. Sumatera, “Kepolisian Republik Indonesia Menggunakan,” vol. 4307, no. August, pp. 1266–1272, 2024.
M. Ridwan, S. AM, B. Ulum, and F. Muhammad, “Pentingnya Penerapan Literature Review pada Penelitian Ilmiah (The Importance Of Application Of Literature Review In Scientific Research),” J. Masohi, vol. 2, no. 1, pp. 42–51, 2021, [Online]. Available: http://journal.fdi.or.id/index.php/jmas/article/view/356
J. Budiarto, “Identifikasi Kebutuhan Masyarakat Nusa Tenggara Barat pada Pandemi Covid-19 di Media Sosial dengan Metode Crawling,” JTIM J. Teknol. Inf. dan Multimed., vol. 2, no. 4, pp. 244–250, 2021, doi: 10.35746/jtim.v2i4.119.
R. Rahmadani, A. Rahim, and R. Rudiman, “Analisis Sentimen Ulasan ‘Ojol the Game’ Di Google Play Store Menggunakan Algoritma Naive Bayes Dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.4988.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Try Fani, Yusuf Ramadhan Nasution

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



