Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes

 (*)Amrin Amrin Mail (Universitas Bina Sarana Informatika, Indonesia)
 Hafdiarsya Saiyar (Universitas Bina Sarana Informatika, Indonesia)

(*) Corresponding Author

DOI: http://dx.doi.org/10.30865/jurikom.v5i5.900

Abstract

It is important for doctors to make an early diagnosis of tuberculosis in order to reduce the transmission of the disease to the wider community. In this study, the authors will apply methods of data mining classification, Naïve Bayes to diagnose tuberculosis disease. Based on the performance measurement results of the models using Cross Validation, Confusion Matrix and ROC Curve methods, it is known that Naïve Bayes method with accuracy of 94.18% and under the curva (AUC) value of 0.97. This shows that the models that are produced including the category of classification is very good because it has an AUC value between 0.90-1.00.

Full Text:

PDF


Article Metrics

Abstract View: 666 times | PDF View: 594 times

References

Amrin, A. (2016). Data Mining Dengan Regresi Linier Berganda Untuk Peramalan Tingkat Inflasi. Jurnal Techno Nusa Mandiri, XIII(1), 74–79. Retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/index.php/techno/article/view/268

Fine, J. (2012). An Overview Of Statistical Methods in Diagnostic Medicine. Chapel Hill.

Gorunescu, F. (2011). Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg: Springer.

Han, J., & Kamber, M. (2006). Data Mining Concept and Tehniques. San Fransisco: Morgan Kauffman.

Kusrini, &. E. (2009). Algoritma Data Mining . Yogyakarta: Andi Publishing.

Liao. (2007). Recent Advances in Data Mining of Enterprise Data: Algorithms and Application. Singapore: World Scientific Publishing.

Orhan, E., Temurtas, F., & Tanrıkulu, A. Ç. (2010). Tuberculosis Disease Diagnosis Using Artificial Neural Networks. Springer, 299-302.

Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

Sogala, S. S. (2006). Comparing the Efficacy of the Decision Trees with Logistic Regression for Credit Risk Analysis. India.

Sumathi, &. S. (2006). Introduction to Data Mining and its Applications. Berlin Heidelberg New York: Springer.

Vercellis, C. (2009). Business Intelligent: Data Mining and Optimization for Decision Making. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd. Southern Gate, Chichester, West Sussex: John Willey & Sons, Ltd.: Vercellis, Carlo (2009). Business Intelligent: Data Mining and OpJohn Willey & Sons, Ltd.

Widoyono. (2011). Penyakit Tropis Epidemiologi, Penularan, Pencegahan dan Pemberantasan. Jakarta: Erlangga.

Witten, I. H. (2011). Data Mining: Practical Machine Learning and Tools. Burlington: Morgan Kaufmann Publisher.

Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURIKOM (Jurnal Riset Komputer)



JURIKOM (Jurnal Riset Komputer)
Di publikasikan oleh P3M - STMIK BUDI DARMA
Email: jurikom.stmikbd@gmail.com

Creative Commons License
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Attribution 4.0 International.