Clustering Analysis Of Toddler Nutritional Status Using The K-Means Method On Posyandu Data
DOI:
https://doi.org/10.30865/jurikom.v12i4.8947Keywords:
Data Mining, K-Means, Clustering, StuntingAbstract
The issue of toddler nutritional status remains a serious concern because it can affect children's health and development, including the risk of stunting and cognitive impairment. At the Tanjung Asri Village Health Center, nutritional status is still recorded manually, which is inefficient and prone to classification errors. This study aims to develop a system for classifying the nutritional status of infants using the K-Means Clustering method based on desktop software to simplify the classification of nutritional status into three categories: malnourished, moderately nourished, and well-nourished. This study uses a quantitative approach with primary data from 100 infants collected through observation and interviews in May and June 2025. The clustering process was performed using RapidMiner with the parameter k = 3. The test results showed that the K-Means method was able to produce accurate centroid centers consistent with manual results. In May 2025, there were 22 infants with poor nutrition, 21 infants with moderate nutrition, and 7 infants with good nutrition, while in June 2025, there were 27 infants with poor nutrition, 8 infants with moderate nutrition, and 15 infants with good nutrition. The developed system has proven effective in supporting the classification and monitoring of infant nutritional status in a more objective and efficient manner.
References
T. R. Nureni, “Analisis Klasterisasi K-Means untuk Klasifikasi Status Gizi dan Kondisi Bayi Baru Lahir Berdasarkan Kecamatan di Kabupaten Probolinggo 2023,” Digit. POLICY INSIGHTS Adv. Data Min. Digit. Gov., vol. 1, no. 1, pp. 14–26, 2025.
M. Faid and M. Sukron, “Pemetaan Daerah Rawan Stunting dengan Algoritma K-Means dan Analisis Demografis di Kabupaten Probolinggo,” JOKI J. Comput. Informatics, vol. 2, no. 1, pp. 16–25, 2025.
J. R. S. Penda Sudarto Hasugian, “Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 3, no. 3, pp. 262–268, 2022, [Online]. Available: https://djournals.com/klik
A. Y. Simanjuntak, I. S. S. Simatupang, and Anita, “Implementasi Data Mining Menggunakan Metode Naïve Bayes Classifier Untuk Data Kenaikan Pangkat Dinas,” J. Sci. Soc. Res., vol. 4307, no. 1, pp. 85–91, 2022.
A. Yahya and R. Kurniawan, “Implementasi Algoritma K-Means untuk Pengelompokan Data Penjualan Berdasarkan Pola Penjualan,” MALCOM Indones. J. Mach. Learn. Comput. Sci. J., vol. 5, no. January, pp. 350–358, 2025.
R. Rahmawati, W. Prihartono, and K. Cirebon, “Optimasi Stok Dengan Clustering Data Transaksi Penjualan Menggunakan Algoritma K-Means di Konter Agung Cell,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 13, no. 2, 2025.
A. Alawiyah, N. Aghnia, and F. F. Abdalah, “Implementasi Clustering Algoritma K-Means Pada Penjualan Beras Di CV Tangguh Bumi Perkasa,” J. Komisi (Jurnal Komput. dan Sist. Informasi), vol. 2, no. 2, pp. 17–23, 2025.
N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. Dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, [Online]. Available: https://doi.org/10.58602/jima-ilkom.v3i1.26
R. Farismana, “Penerapan K-Means Clustering Untuk Pemetaan Produktivitas Padi Dan Prediksi Panen Di Kabupaten Indramayu,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 8, no. 3, p. 589, 2024, doi: 10.52362/jisamar.v8i3.1572.
M. Syahran, “Membangun Kepercayaan Data dalam Penelitian Kualitatif,” Prim. Educ. J., vol. 4, no. 2, pp. 19–23, 2020, doi: 10.30631/pej.v4i2.72.
N. Bili, R. T. Abineno, and A. Aha Pekuwali, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Peforma Siswa Pada Pembelajaran Bahasa Indonesia (Studi Kasus?: SD Inpress Waingapu 3),” SATI Sustain. Agric. Technol. Innov., pp. 523–537, 2024.
W. P. Priyadi, J. D. Irawan, and A. Faisol, “Penerapan Data Mining Untuk Clustering Wilayah Produksi Pada Menggunakan Metode K-Means (Studi Kasus?: Wilayah Jawa Timur),” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 5, pp. 8381–8388, 2024.
S. Wijayanto and M. Yoka Fathoni, “Pengelompokkan Produktivitas Tanaman Padi di Jawa Tengah Menggunakan Metode Clustering K-Means,” Jupiter, vol. 13, no. 2, pp. 212–219, 2021.
I. Ibrahim and W. Usino, “Klasterisasi Tingkat Kelayakan Provinsi Dalam Pembangunan Kawasan Industri Menggunakan Algoritma K-Means,” SENAFTI (Semiinar Nas. Mhs. Fak. Teknol. Informasi), vol. 3, no. September, pp. 324–333, 2024.
W. W. Kristianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki),” J. Pendidik. Teknol. Inf., vol. 5, no. 2, pp. 90–98, 2022, doi: 10.37792/jukanti.v5i2.547.
D. D. Susilo, S. S. Hilabi, B. Priyatna, and E. Novalia, “Implementasi Data Mining dalam Pengelompokan Data Pembelian Menggunakan Algoritma K-Means Pada PT.Otomotif 1,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 476, 2024, doi: 10.35889/jutisi.v13i1.1836.
J. Multidisiplin Saintek, Y. Candra Pratama, and Z. Reno Saputra, “Sistem Informasi Desa Delta Upang Berbasis Web,” J. Sains dan Teknol., vol. 2, no. 12, pp. 86–96, 2024, [Online]. Available: https://ejournal.warunayama.org/index.php/kohesi/article/download/2788/2634
A. E. Febriyanti, S. Z. Harahap, and M. Masrial, “Penerapan Data Mining Untuk Evaluasi Data Penjualan Menggunakan Metode Clustering dan Algoritma Hirarki Divisive Studi Kasus Toko Sembako Pujo,” INFORMATIKA, vol. 15, no. 1, pp. 72–86, 2024, doi: 10.25130/sc.24.1.6.
M. Adelina Bui and A. Bahtiar, “Implementasi Metode Algoritma K-Means Clustering Untuk Mengelompokkan Transaksi Penjualan Barang Di Toko Arino,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1451–1456, 2024, doi: 10.36040/jati.v8i2.8975.
A. Y. Sari and E. Supriatna, “Penerapan Data Mining Menggunakan Metode Algoritma Naive Bayes Classifier untuk Mendukung Strategi Promosi,” J. Dimamu, vol. 3, no. 1, pp. 18–28, 2023, doi: 10.32627/dimamu.v3i1.837.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yurizka Sri Nanda, Nurul Rahmadani, Ahmad Muhazir

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



