Analysis of Public Sentiment Towards Tax Increases Impacting Unemployment Using SVM and Multinomial Naive Bayes Methods
DOI:
https://doi.org/10.30865/jurikom.v12i4.8922Keywords:
Analisis Sentimen, Kenaikan Pajak, Pengangguran, SVM, Multinomial Naive BayesAbstract
Tax increase policies often generate pros and cons among the public, especially when perceived as having an impact on increasing unemployment. This study aims to analyze public sentiment regarding the issue of tax increases impacting unemployment by utilizing Machine Learning classification methods, namely Support Vector Machine (SVM) and Multinomial Naive Bayes (MNB). The data used comes from social media platform X in the form of public opinions collected online and then categorized into three sentiments: positive, negative, and neutral, with a total of 1,000 sentiment data points. The analysis process included text preprocessing, feature extraction with TF-IDF, and classification using both methods. In the Test and Score algorithm, the SVM algorithm produced an AUC of 0.660, CA of 0.694, F1 of 0.569, and Recall of 0.694, while the MNB algorithm produced an AUC of 0.586, CA of 0.198, F1 of 0.105, and Recall of 0.198. The study concluded that Support Vector Machines (SVMs) had a higher level of accuracy than Multinominal Naïve Bayes in classifying public sentiment. The majority of public opinion tended to be negative, indicating concern about the impact of tax increases on the workforce. These findings provide important insights for policymakers to consider public perception when establishing future fiscal policy.
References
L. L. A. Mufida and M. S. Nasir, “Analisis Dinamis Tingkat Pengangguran di Indonesia,” J. Macroecon. Soc., vol. 1, no. 1, pp. 1–14, 2023.
F. A. Tanjung, A. P. Windarto, and M. Fauzan, “Penerapan Metode K-Means Pada Pengelompokkan Pengangguran Di Indonesia,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 61, 2021.
J. Han and M. Kamber, Data Mining Concept and Technique. San Francisco: Morgan Kauffman, 2006.
M. Rafi, “Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa,” vol. 12, no. 2, pp. 121–129, 2020.
A. C. Rahmat, “Identitas Proposal Penelitian,” pp. 1–32, 2022.
A. Ernawati, A. O. Sari, S. N. Sofyan, M. Iqbal, and R. F. W. Wijaya, “Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan,” Bull. Inf. Technol., vol. 4, no. 4, pp. 533–543, 2023.
W. B. Zulfikar, A. R. Atmadja, and S. F. Pratama, “Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes,” Sci. J. Informatics, vol. 10, no. 1, pp. 25–34, 2023.
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023.
M. Saputra, S. Nurhaliza Sofyan, A. Aulia, A. Ernawati, A. Oftasari, and R. Farta wijaya, “Implementation of E-Commerce System as SME Development Strategy in the Digital Era,” Bull. Inf. Technol., vol. 5, no. 3, pp. 195–202, 2024.
Z. Sitorus, M. Saputra, S. N. Sofyan, U. Pembangunan, and P. Budi, “SENTIMENT ANALYSIS OF INDONESIAN COMMUNITY TOWARDS ELECTRIC,” vol. 10, no. 1, pp. 108–113, 2024.
Muit Sunjaya, Zulham Sitorus, Khairul, Muhammad Iqbal, and A.P.U Siahaan, “Analysis of machine learning approaches to determine online shopping ratings using naïve bayes and svm,” Int. J. Comput. Sci. Math. Eng., vol. 3, no. 1, pp. 7–16, 2024.
M. Rasyid, Z. Sitorus, R. F. Wijaya, and M. Iqbal, “MACHINE LEARNING ANALYSIS IN IMPROVING THE EFFICIENCY OF THE STUDENT ADMISSION DECISION MAKING PROCESS NEW AT PANCA BUDI MEDAN DEVELOPMENT UNIVERSITY,” vol. 3, no. 3, pp. 216–225, 2024.
A. P. Nugraheni, S. N. Sunaningsih, and N. A. Khabibah, “Peran Konsultan Pajak Terhadap Kepatuhan Wajib Pajak,” Jati J. Akunt. Terap. Indones., vol. 4, no. 1, p. Editing, 2021.
E. Suprapto, “Pengelompokkan Potensi Padi di Indonesia Menggunakan K-Means Cluster,” J. Ilm. Pop., vol. 5, no. 2, pp. 28–34, 2022.
A. Pambudi and S. Suprapto, “Effect of Sentence Length in Sentiment Analysis Using Support Vector Machine and Convolutional Neural Network Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 1, p. 21, 2021.
R. Meiyanti, M. M. Munauwar, R. Fitria, and H. Al Kautsar, “Implementasi Algoritma K-Medoid pada Clustering Sayuran Unggulan di Kabupaten Aceh Utara,” vol. 19, no. x, pp. 327–337, 2024.
Y. S. T. Allo, V. Sofica, N. Hasan, and M. Septiani, “Penggunaan Metode Naïve Bayes Dalam Mengklasifikasi Pengangguran Pada Desa Bojong Kulur,” Bianglala Inform., vol. 10, no. 1, pp. 30–35, 2022.
D. N. Ayu Ofta Sari, Muhammad Iqbal, “Analisis Faktor Demografi Dan Sosial Ekonomi Untuk Mendeteksi Dini Risiko Putus Kuliah Menggunakan Metode Support Vector Machine (Svm) Dan Decision Tree (Studi Kasus : STMIK Triguna Dharma).” JATILIMA, medan, p. 17, 2025.
R. Millena and T. Jesi, “Jurnal Analisis Pendapatan Negara Indonesia Kota Bogor Provinsi Jawa Barat Dengan Metode Kuantitatif,” Jesya (Jurnal Ekon. Ekon. Syariah), vol. 4, no. 2, pp. 1004–1009, 2021.
P. Candra Susanto, D. Ulfah Arini, L. Yuntina, J. Panatap Soehaditama, and N. Nuraeni, “Konsep Penelitian Kuantitatif: Populasi, Sampel, dan Analisis Data (Sebuah Tinjauan Pustaka),” J. Ilmu Multidisplin, vol. 3, no. 1, pp. 1–12, 2024.
E. Mardiani et al., “Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy,” Digit. Transform. Technol., vol. 3, no. 2, pp. 686–693, 2023.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Siti Nur Haliza, Siti Nur Haliza, Zul Ham Sitorus

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



