Sistem Deteksi Dini Gangguan Mental Menggunakan Algoritma Random Forest
DOI:
https://doi.org/10.30865/jurikom.v12i4.8857Keywords:
CRISP-DM, Machine Learning, Mental Health Prediction, Random ForestAbstract
Early detection of mental health disorders poses a significant challenge in primary care, often hindered by conventional assessment methods that are subjective and time-consuming. This research aims to design and evaluate an intelligent system prototype for predicting mental health risks. Adopting the Cross-Industry Standard Process for Data Mining (CRISP-DM) framework , this study utilized 1,000 medical record datasets from Clinic. A predictive model was developed using the Random Forest algorithm, which is known for its robustness in handling complex data. Evaluation results indicate exceptional model performance, achieving a weighted accuracy of 99.67% on the test dataset. Feature importance analysis confirmed that social support, sleep quality, and physical activity variables are the most significant predictors. The prototype was successfully implemented as an interactive web application using Streamlit, demonstrating the feasibility of using machine learning as a rapid and accurate clinical decision support tool for mental health screening at the primary care level.
References
World Health Organization, “Mental health,” WHO, 2022. https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response (accessed Jul. 01, 2025).
Badan Penelitian dan Pengembangan Kesehatan, “Laporan Riskesdas 2018,” Kemenkes RI, 2018. https://www.litbang.kemkes.go.id/laporan-riskesdas-2018 (accessed Jul. 01, 2025).
R. L. Spitzer, J. B. W. Williams, and K. Kroenke, “Utility of a new procedure for diagnosing mental disorders in primary care,” JAMA, vol. 282, no. 18, pp. 1737–1744, 2019, doi: 10.1001/jama.282.18.1737.
M. Corrigan, “How stigma interferes with mental health care,” Am. Psychol., vol. 59, no. 7, pp. 614–625, 2021, doi: 10.1037/0003-066X.59.7.614.
Indonesian Psychiatric Association, “Rasio Psikiater di Indonesia Masih Rendah,” PDSKJI, 2023. https://pdskji.org/news/rasio-psikiater-di-indonesia-rendah (accessed Jul. 01, 2025).
J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81–106, 2021, doi: 10.1007/BF00116251.
L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2020, doi: 10.1023/A:1010933404324.
T. K. Ho, “The random subspace method for constructing decision forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 2020, doi: 10.1109/34.709601.
B. Chandrasekaran, S. Ram, and A. Patel, “Depression detection using SVM over Twitter data,” in Proc. Int. Conf. Comput. Vis. Soft Comput., 2021, pp. 201–206, doi: 10.1109/CVSC.2021.9654782.
M. Islam, N. Kabir, and F. Ahmed, “Deep learning approach to mental health prediction from mobile usage patterns,” Int. J. Med. Inform., vol. 145, 2023, doi: 10.1016/j.ijmedinf.2020.104312.
Y. Wang, Q. Zhang, and X. Liu, “Stress detection using XGBoost and physiological signals,” in Proc. IEEE Conf. Biomed. Signal Process., 2021, pp. 312–316, doi: 10.1109/BSP.2021.9426123.
C. Lobo, R. Han, and J. Smith, “Detection of bipolar disorder using EEG and Random Forest classifier,” Biomed. Eng. Online, vol. 19, no. 1, pp. 1–14, 2020, doi: 10.1186/s12938-020-00740-4.
R. Sari and H. Nugroho, “Klasifikasi gangguan mental pada mahasiswa menggunakan Naïve Bayes dan Decision Tree,” J. Ilm. Inform., vol. 12, no. 2, pp. 55–64, 2021, doi: 10.25126/jii.v12i2.221.
R. A. Fathin and S. Maharani, “Comparison of Decision Tree and Random Forest for Mental Health Detection Based on Social Media Interaction,” in Proc. 5th Int. Conf. Inf. Technol. Comput. Electr. Eng., 2022, pp. 89–94, doi: 10.1109/ICITACEE54104.2022.9752194.
M. Midhula, R. Rajesh, and V. Sharma, “Random Forest Based Multi-Label Classification for Mental Health Analysis,” Procedia Comput. Sci., vol. 199, pp. 763–770, 2022, doi: 10.1016/j.procs.2022.01.092.
D. Maldini, M. P. Anggraeni, and T. Irawan, “Stacked Generalization Approach for Early Detection of Mental Disorder Based on Social Media,” J. Big Data, vol. 10, no. 3, pp. 231–241, 2023, doi: 10.1186/s40537-023-00745-1.
A. Sharma, Y. Goyal, and N. Thakur, “Multimodal Machine Learning for Mental Illness Detection: A Survey,” Comput. Biol. Med., vol. 144, 2023, doi: 10.1016/j.compbiomed.2022.105398.
R. Priyono, M. Y. Aditya, and A. Cahyadi, “Penerapan Algoritma Random Forest dalam Deteksi Dini Gangguan Mental pada Remaja,” J. Sains Data, vol. 5, no. 1, pp. 33–41, 2023, doi: 10.54323/jsd.v5i1.211.
J. Doe and A. Smith, Foundations of Abnormal Psychology, 4th ed. New York, NY: Oxford University Press, 2021.
Universitas Gadjah Mada, “1 dari 3 Remaja Indonesia Alami Gangguan Mental,” ugm.ac.id, 2023. https://ugm.ac.id/id/berita/23456-1-dari-3-remaja-alami-gangguan-mental (accessed Jul. 01, 2025).
D. C. P. Buani dan A. Rahmawati, “KLASIFIKASI MENTAL DISORDER DENGAN MENGGUNAKAN ALGORITMA RANDOM FOREST,” JUSIM (Jurnal Sistem Informasi Musirawas), vol. 9, no. 2, hlm. 101–109, Des 2024, doi: 10.32767/jusim.v9i2.2364.
R. Ririn, A. Rizki Rinaldi, and F. M Basysyar, “PREDIKSI KESEHATAN MENTAL MENGGUNAKAN RANDOM FOREST BERDASARKAN FAKTOR DEMOGRAFI DAN LINGKUNGAN KERJA,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 3, pp. 4515–4522, May 2025, doi: 10.36040/jati.v9i3.13720.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Ilham 'Aziiz Alfarobi, Tariq Tariq, Romadona Romadona, Aprilisa Arum Sari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



