Quantitative Analysis of Training Completion Using Multivariate Linear Regression
DOI:
https://doi.org/10.30865/jurikom.v12i4.8851Keywords:
Digital Training, Predictive Model, Multivariate Linear Regression, Training Evaluation, Technology Readiness Level (TRL/TKT)Abstract
The urgency of this research stems from the strategic need to monitor and evaluate the achievements of digital training implemented by various academies under government coordination, including VSGA, FGA, DEA, TA, and GTA. In the context of the national digital transformation program, the availability of an analytical model that can predict the success of participants in completing training is critically crucial to support the achievement of the Ministry’s Key Performance Indicators (KPIs). The purpose of this study is to develop a predictive model based on multivariate linear regression that combines two main variables, the percentage of participants accepted and the percentage of participants who participate in onboarding, to project the level of training completion. This model is expected to provide a quantitative and objective assessment of the effectiveness of digital training implementation in each academy. The targeted outputs of this study include the development of a predictive model with performance validation through the calculation of R², which yielded a value of 0.9448, as well as the provision of technical reports and data-driven recommendations for enhancing digital training governance. The Technology Readiness Level (TKT) of this study is at TKT 3, and there is evidence of conceptual validation of the predictive model based on real data collected from the implementation of the training. This stage marks the readiness of the research to continue developing the system model and implementing it on the training evaluation platform in the next stage.References
S. Abdullah, B. Baharuddin, and A. N. Tanal, “Effectiveness of Digital Training for Educational Staff in Management Information Systems,” Int. J. ASIAN Educ., vol. 6, no. 1, pp. 141–150, 2025.
B. Means, Y. Toyama, R. Murphy, M. Bakia, and K. Jones, “Evaluation of Evidence-Based Practices in Online Learning,” Structure, p. 66, 2010, [Online]. Available: www.ed.gov/about/offices/list/opepd/ppss/reports.html
L. M. Romero-Rodríguez, M. S. Ramírez-Montoya, and I. Aguaded, “Determining factors in MOOCs completion rates: Application test in energy sustainability courses,” Sustain., vol. 12, no. 7, 2020, doi: 10.3390/su12072893.
B. Celik and K. Cagiltay, “Uncovering MOOC Completion: A Comparative Study of Completion Rates from Different Perspectives,” Open Prax., vol. 16, no. 3, pp. 445–456, 2024, doi: 10.55982/openpraxis.16.3.606.
G. P. Mbambo and E. C. du Plessis, “Evaluating technical vocational education and training college student’s digital skills versus throughput rate,” Discov. Educ., vol. 4, no. 1, 2025, doi: 10.1007/s44217-025-00396-8.
D. Jatikusumo, B. Sukowo, and Y. Devianto, “Pembelajaran Algoritma Regresi Linier Menggunakan Python untuk Sekolah ( Studi Kasus : SMK Media Informatika ),” Kapas Kumpul. Artik. Pengabdi. Masy., vol. 3, no. 1, pp. 81–89, 2024.
D. Jatikusumo and R. R. Hidayat, “Optimasi penentuan lokasi bencana alam dengan regresi linier sederhana dan berganda,” JITET (Jurnal Inform. dan Tek. Elektro Ter., vol. 12, no. 3, 2024.
R. A. Cardoso, G. A. B. Oliveira, G. M. J. Almeida, and J. A. Araújo, “A simple linear regression strategy for fretting fatigue life estimates,” Tribol. Int., vol. 198, no. May, p. 109852, 2024, doi: 10.1016/j.triboint.2024.109852.
M. F. C?lin and E. Tu?a, “Using t-Student and U-Mann-Whitney tests to identify differences in the study of the impact of the Covid 19 pandemic in online education in schools,” Analele Stiint. ale Univ. Ovidius Constanta, Ser. Mat., vol. 31, no. 2, pp. 39–59, 2023, doi: 10.2478/auom-2023-0018.
D. Van Den Bergh et al., “A tutorial on conducting and interpreting a bayesian ANOVA in JASP,” Annee Psychol., vol. 120, no. 1, pp. 73–96, 2020, doi: 10.3917/anpsy1.201.0073.
Z. Yu, M. Guindani, S. F. Grieco, L. Chen, T. C. Holmes, and X. Xu, “Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research,” Neuron, vol. 110, no. 1, pp. 21–35, 2022, doi: 10.1016/j.neuron.2021.10.030.
A. I. Yasril and F. Fatma, “Penerapan Uji Korelasi Spearman Untuk Mengkaji Faktor Yang Berhubungan Dengan Kejadian Diabetes Melitus Di Puskesmas Sicincin Kabupaten Padang Pariaman,” Hum. Care J., vol. 6, no. 3, p. 527, 2021, doi: 10.32883/hcj.v6i3.1444.
J. Saputra and D. Nurwidyaningrum, “Analisis faktor-faktor yang mempengaruhi kompetensi lulusan melalui tracer study prodi d4 teknik konstruksi gedung PNJ,” J. Taman Vokasi, vol. 10, no. 1, pp. 1–9, 2022.
“Program Kartu Prakerja.” Accessed: Apr. 21, 2025. [Online]. Available: https://sdgs.un.org/partnerships/program-kartu-prakerja#:~:text=beneficiaries are satisfied with the,following the training courses
B. N. Alarifi and S. Song, “Online vs in-person learning in higher education: effects on student achievement and recommendations for leadership,” Humanit. Soc. Sci. Commun., vol. 11, no. 1, pp. 1–8, 2024, doi: 10.1057/s41599-023-02590-1.
R. Anand and N. Gupta, “Impact of Online Learning on Student Engagement and Academic Performance,” Prax. Int. J. Soc. Sci. Lit., vol. 6, no. 7, pp. 29–40, 2023, doi: 10.51879/pijssl/060703.
A. Anggrawan, “Analisis Deskriptif Hasil Belajar Pembelajaran Tatap Muka dan Pembelajaran Online Menurut Gaya Belajar Mahasiswa,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 2, pp. 339–346, 2019, doi: 10.30812/matrik.v18i2.411.
A. Lianawati, “Analisis Deskriptif Burnout Mahasiswa Bimbingan dan Konseling Selama Pembelajaran Daring,” Edukatif J. Ilmu Pendidik., vol. 4, no. 2, pp. 1678–1685, 2022, doi: 10.31004/edukatif.v4i2.2191.
R. Aisy, E. Prihatin, and D. Nurdin, “Efektivitas Implementasi Evaluasi Pembelajaran pada Diklat Berbasis Digital,” Didakt. J. Kependidikan, vol. 13, no. 3, pp. 3705–3714, 2024, [Online]. Available: https://jurnaldidaktika.org/contents/article/view/786%0Ahttps://jurnaldidaktika.org/contents/article/download/786/588
H. B. Setiawan and D. Casmiwati, “Efektivitas Program Pelatihan Berbasis Kompetensi di Balai Latihan Kerja, Kota Surabaya,” J. Polit. dan Pemerintah. Drh., vol. 6, no. 1, pp. 24–33, 2024.
R. P. Widihartono and M. A. Ahmadi, “Pengaruh Pelatihan Terhadap Kinerja Karyawan Di Era Digital,” J. Ilm. Ekon. Manaj. DAN BISNIS, vol. 6, no. October, pp. 23–32, 2024, [Online]. Available: http://repository.usbypkp.ac.id/3699/
L. Kircik and M. Goldust, “The Role of Virtual and Augmented Reality in Advancing Drug Discovery in Dermatology,” J. Cosmet. Dermatol., vol. 24, no. 2, pp. 3915–3924, 2025, doi: 10.1111/jocd.70071.
Z. Li et al., “Design of a Dynamic Monitoring and Early Intervention System for Left-Behind Children’s Learning Power,” ACM Int. Conf. Proceeding Ser., pp. 305–312, 2024, doi: 10.1145/3696952.3696993.
A. Derder, R. Sudaria, and J. Paglinawan, “Digital Infrastructure on Teaching Effectiveness of Public-School Teachers,” Am. J. Educ. Pract., vol. 7, no. 6, pp. 1–13, 2023, doi: 10.47672/ajep.1719.
B. S. Nickerson, M. R. Esco, G. Schaefer, E. J. Aguiar, and S. A. Czerwinski, “A descriptive analysis of sarcopenia markers in young adults with down syndrome,” Exp. Gerontol., vol. 199, no. December 2024, p. 112655, 2025, doi: 10.1016/j.exger.2024.112655.
J. Jiang, X. Zhang, and Z. Yuan, “Feature selection for classification with Spearman’s rank correlation coefficient-based self-information in divergence-based fuzzy rough sets,” Expert Syst. Appl., vol. 249, no. PB, p. 123633, 2024, doi: 10.1016/j.eswa.2024.123633.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yudo Devianto, Saruni Dwiasnati, Wawan Gunawan, Marco Alfan Sumarto, Dony Ramadhan Saputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



